Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 1 of 12

IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS
TYLER DIVISION

GEMALTO S.A,,

Plaintiff,
V. Civil Action No. 6:10-cv-561
HTC CORPORATION, HTC AMERICA,
INC., EXEDEA, INC., SAMSUNG
ELECTRONICS CO., LTD., SAMSUNG
TELECOMMUNICATIONS AMERICA
LLC, MOTOROLA, INC,, and
GOOGLE INC,,

JURY TRIAL DEMANDED

Defendants.

wn W W W W W LW N LW W L LW W

COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff Gemalto S.A. files this Complaint of patent infringement and states as follows:

THE PARTIES

1. Gemalto S.A. is a corporation organized and existing under the laws of France
with a principal place of business at 6 rue de la verrerie, 92197 Meudon Cedex, France and,
together with its affiliated company in the United States, Gemalto, Inc., (collectively,
“Gemalto”) maintains a research and development center at Arboretum Plaza 11, 9442 Capital of
Texas Highway North, Suite 400, Austin, Texas.

2. Gemalto is the global leader in digital security. More than one billion people
worldwide use its products and services for telecommunications, financial services, e-
government, identity and access management, multimedia content, digital rights management, IT
security, mass transit and many other applications. Gemalto has a long tradition of innovation

and invests heavily in research and development. One such innovation is Gemalto’s Java Card

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 2 of 12

Technology, which was developed at its Texas research and development center. Among other
things, this pioneering and ground-breaking technology, protected by United States Patent Nos.
6,308,317, 7,117,485, and 7,818,727 (collectively, the *“Patents-in-Suit”), enables Java
applications and applications developed in other high level programming languages to run on
resource-constrained and other devices, including devices such as smart cards and mobile
phones.

GOOGLE

3. Upon information and belief, Defendant Google Inc. (“Google”) is a Delaware
corporation with its principal place of business at 1600 Amphitheatre Parkway, Mountain View,
California. In addition, Google maintains an office in Austin, Texas and is also qualified to do
business in Texas.

4, Google develops and actively distributes what it refers to as the Android Platform
to application developers and device manufacturers, including the other named Defendants in
this action. The Android Platform is an essential part of Google’s business strategy to extend its
online presence, including its core advertising business, to next generation computing devices.
The Android Platform includes a software development kit (“Android SDK”) for developing
Android applications that incorporates Gemalto’s patented Java Card Technology (“Android
Applications™) without its permission and an operating system (“Android Operating System”)
featuring the Dalvik virtual machine (“Dalvik VM”). The Dalvik VM allows Android
Applications developed with the Android SDK to run on resource-constrained devices that use
the Android Operating System, including devices having computing and memory resources more

limited than desktop computers. The Dalvik VM was designed without Gemalto’s permission

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 3 of 12

using Gemalto’s Java Card Technology and uses that technology to execute Android
Applications.

5. In addition, Google provides device manufacturers with Android Applications
that it develops using Gemalto’s Java Card Technology. Such applications include Google Talk,
Google Maps, Google Voice, Google Calendar, Google Email—*“Gmail,” Google Finance,
Google Contacts, Google Shopper, among others.

6. Furthermore, Google makes, uses, offers to sell and/or sells devices incorporating
the Android Operating System (“Android Devices”) and the Dalvik VM to run Android
Applications, including mobile phones sold under the tradename Nexus One.

7. Google has sought to leverage the existing community of Java programmers and
application developers in other high level programming languages and encourages them to
develop Android Applications by, for example, distributing the Android Platform for free,
offering millions of dollars in prizes for the best Android Applications and providing an
“Android Market” through which Android Application developers can distribute and sell their
applications to end-users.

HTC

8. Upon information and belief, Defendant HTC Corporation is a Taiwanese
corporation with its principal place of business at 23 Xinghua Rd., Taoyuan 330, Taiwan, R.O.C.

9. Upon information and belief, Defendant HTC America, Inc., is a subsidiary of
Defendant HTC Corporation. HTC America, Inc. is a Texas corporation with a principal place
of business at 13920 SE Eastgate Way, Suite 400, Bellevue, Washington. In addition, HTC

America, Inc. has an office in Houston, Texas and is qualified to do business in Texas.

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 4 of 12

10. Upon information and belief, Defendant Exedea, Inc., an affiliated company of
HTC Corporation, is incorporated under the laws of the State of Texas with its principal place of
business at 5950 Corporate Drive, Houston, Texas. Defendants HTC Corporation, HTC
America, Inc., and Exedea, Inc. are collectively referred to herein as “HTC.”

11. HTC makes, uses, sells and offers to sell Android Devices having the Android
Operating System and Android Applications, including mobile phones sold under the tradenames
Evo 4G, Incredible, Hero, Desire and Dream.

SAMSUNG

12. Upon information and belief, Defendant Samsung Electronics Co., Ltd. is a
Korean company with a principal place of business at 250, 2-ga, Taepyong-ro Jang-gu, Seoul
100-742 South Korea.

13. Upon information and belief, Defendant Samsung Telecommunications America,
LLC is a subsidiary of Defendant Samsung Electronics Co. Ltd. Samsung Telecommunications
America LLC is a Delaware corporation with a principal place of business at 1301 East Lookout
Drive, Richardson, Texas. Samsung Telecommunications America is qualified to do business in
Texas. Defendants Samsung Electronics Co. Ltd. and Samsung Telecommunications America,
LLC are collectively referred to herein as “Samsung.”

14. Samsung makes, uses, sells and offers to sell Android Devices having the Android
Operating System and Android Applications, including mobile phones sold under the tradenames
Fascinate and Transform.

MOTOROLA

15. Upon information and belief, Defendant Motorola, Inc. (“Motorola”) is a

Delaware corporation with its principal place of business at 1303 East Algonquin Road,

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 5 of 12

Schaumberg, Illinois. Motorola is qualified to do business in Texas and has one or more
locations within Texas, including in Plano, Texas.

16. Motorola makes, uses, sells and offers to sell Android Devices having the
Android Operating System and Android Applications, including mobile phones sold under the
tradenames Devour, Droid, Droid Pro, Droid X and Droid 2.

17. Defendants have encouraged and supported the development of Android
Applications and the use of the Android Operating System with the Dalvik VM, including by
incorporating the Android Operating System and Android Applications in their Android Devices.

JURISDICTION AND VENUE

18. This is an action for patent infringement arising under the Patent Laws of the
United States, United States Code, 35 U.S.C. § 271 et seq. This Court has subject matter
jurisdiction over this action under Title 28, United States Code, §§ 1331 and 1338(a).

19. This Court has personal jurisdiction over each of the Defendants, including
because each of the Defendants has conducted business, and continues to conduct business,
within the State of Texas. In addition, Defendants, directly or through intermediaries (including
distributors, retailers, and others) make, distribute, offer for sale, sell, advertise, and/or use their
products in the State of Texas.

20. On information and belief, venue in this Judicial District is proper under Title 28,
United States Code, 88 1391 and 1400(b) because Defendants regularly conduct business in this
judicial district, and the acts complained of herein occurred in this judicial district.

PATENTS-IN-SUIT

21. On October 23, 2001, the United States Patent and Trademark Office (“USPTO”)

duly and legally issued United States Patent No. 6,308,317 (“the *317 Patent”), entitled “Using a

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 6 of 12

High Level Programming Language with a Microcontroller.” The *317 patent was the subject of
a reexamination proceeding filed by Sun Microsystems, Inc. and its validity was reaffirmed by
the USPTO. Gemalto holds all right, title, and interest in and to the *317 Patent. A true and
correct copy of the *317 Patent is attached as Exhibit A.

22. On October 3, 2006, the USPTO duly and legally issued United States Patent No.
7,117,485 (“the ’485 Patent”), entitled “Using a High Level Programming Language with a
Microcontroller.” Gemalto holds all right, title, and interest in and to the *485 Patent. A true and
correct copy of the *485 Patent is attached as Exhibit B.

23. On October 19, 2010, the USPTO duly and legally issued United States Patent
No. 7,818,727 (“the *727 Patent”), entitled “Using a High Level Programming Language with a
Microcontroller.” Gemalto holds all right, title, and interest in and to the *727 Patent. A true and
correct copy of the *727 Patent is attached as Exhibit C.

24. Plaintiff Gemalto is the owner of the 317, ’485, and 727 patents and has the
right to prevent others from making, having made, using, offering for sale or selling products or
services covered by such patents, as well as the right to enforce the Patents-in-Suit against the
Defendants who are using Gemalto’s Java Card Technology without permission.

25. Android Applications and the development of such applications using the Android
SDK infringe one or more claims of the Patents-in-Suit.

26. The Android Devices provided by Defendants that incorporate the Android
Operating System and Android Applications infringe one or more claims of the Patents-in-Suit.

27. On information and belief, Defendants have purposefully, actively and voluntarily
distributed or sold Android Devices and/or the Android Platform, including the Android SDK,

Android Operating System, and Android Applications, with the expectation that they will be

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 7 of 12

purchased, used or licensed by consumers in the Eastern District of Texas. The Android
Platform and/or the Android Devices have been and continue to be purchased, used, and licensed
by consumers in the Eastern District of Texas. Defendants have thus committed acts of patent
infringement within the State of Texas, and particularly, within the Eastern District of Texas. By
purposefully, actively, and voluntarily distributing one or more of their infringing products and
services, Defendants have injured Gemalto and are thus liable to Gemalto for infringement of the
Patents-in-Suit in this litigation pursuant to 35 U.S.C. § 271.

COUNT ONE - INFRINGEMENT OF U.S. PATENT 6,308,317

28. Gemalto incorporates by reference herein the averments set forth in paragraphs 1-
27, above.

29. Defendants have been and are now directly infringing and/or indirectly infringing
the ’317 Patent by way of inducement and/or contributory infringement, literally and/or under
the doctrine of equivalents, in this District, and elsewhere, in violation of 35 U.S.C. § 271,
including by making, using, selling, and/or offering for sale in the United States or importing
into the United States, one or more Android SDKs, Android Applications, Android Operating
Systems and/or Android Devices covered by at least one claim of the *317 Patent. Google
contributes to and induces the direct infringement of the ’317 Patent by both Android
Application developers and Android Device manufacturers, including the other named
Defendants, including by distributing the Android SDK, Android Operating Systems, and
Android Applications. All Defendants contribute to and induce the direct infringement of the
"317 Patent by Android Application developers, including by incorporating the Android

Operating System and Android Applications in their Android Devices.

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 8 of 12

30. Upon information and belief, at least Defendants Google and Samsung continue
to infringe the *317 patent despite knowledge of the patent. Defendants’ infringement has been
and continues to be willful.

31. Gemalto has been irreparably harmed by the Defendants’ acts of infringement of
the *317 Patent, and will continue to be harmed unless and until Defendants’ acts of infringement
are enjoined by this Court. Gemalto has no adequate remedy at law to redress Defendants’
continuing acts of infringement. The hardships that would be imposed upon Defendants by an
injunction are less than those faced by Gemalto should an injunction not issue. Furthermore, the
public interest would be served by issuance of an injunction.

32. As a result of Defendants’ acts of infringement, Gemalto has suffered and will
continue to suffer damages in an amount to be proved at trial.

COUNT TWO - INFRINGEMENT OF U.S. PATENT 7,117,485

33. Gemalto incorporates by reference herein the averments set forth in paragraphs 1-
27, above.

34. Defendants have been and are now directly infringing and/or indirectly infringing
the *485 Patent by way of inducement and/or contributory infringement, literally and/or under
the doctrine of equivalents, in this District, and elsewhere, in violation of 35 U.S.C. § 271,
including by making, using, selling, and/or offering for sale in the United States or importing
into the United States, one or more Android SDKSs, Android Applications, Android Operating
Systems and/or Android Devices covered by at least one claim of the 485 Patent. Google
contributes to and induces the direct infringement of the ’485 Patent by both Android
Application developers and Android Device manufacturers, including the other named

Defendants, including by distributing the Android SDK, Android Operating Systems, and

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 9 of 12

Android Applications. All Defendants contribute to and induce the direct infringement of the
’485 Patent by Android developers, including by incorporating the Android Operating System
and Android Applications in their Android Devices.

35. Upon information and belief, at least Defendants Google and Samsung continue
to infringe the *485 patent despite knowledge of the patent. Defendants’ infringement has been
and continues to be willful.

36. Gemalto has been irreparably harmed by the Defendants’ acts of infringement of
the 485 Patent, and will continue to be harmed unless and until Defendants’ acts of infringement
are enjoined by this Court. Gemalto has no adequate remedy at law to redress Defendants’
continuing acts of infringement. The hardships that would be imposed upon Defendants by an
injunction are less than those faced by Gemalto should an injunction not issue. Furthermore, the
public interest would be served by issuance of an injunction.

37. As a result of Defendants’ acts of infringement, Gemalto has suffered and will
continue to suffer damages in an amount to be proved at trial.

COUNT THREE — INFRINGEMENT OF U.S. PATENT 7,818,727

38. Gemalto incorporates by reference herein the averments set forth in paragraphs 1-
27, above.

39. Defendants have been and are now directly infringing and/or indirectly infringing
the *727 Patent by way of inducement and/or contributory infringement, literally and/or under
the doctrine of equivalents, in this District, and elsewhere, in violation of 35 U.S.C. § 271,
including by making, using, selling, and/or offering for sale in the United States or importing
into the United States, one or more Android SDKs, Android Applications, Android Operating

Systems and/or Android Devices covered by at least one claim of the 727 Patent. Google

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 10 of 12

contributes to and induces the direct infringement of the °727 Patent by both Android
Application developers and Android Device manufacturers, including the other named
Defendants, including by distributing the Android SDK, Android Operating Systems, and
Android Applications. All Defendants contribute to and induce the direct infringement of the
727 Patent by Android Application developers, including by incorporating the Android
Operating System and Android Applications in their Android Devices.

40. Upon information and belief, at least Defendants Google and Samsung continue
to infringe the *727 patent despite knowledge of the patent. Defendants’ infringement has been
and continues to be willful.

41. Gemalto has been irreparably harmed by the Defendants’ acts of infringement of
the *727 Patent, and will continue to be harmed unless and until Defendants’ acts of infringement
are enjoined by this Court. Gemalto has no adequate remedy at law to redress Defendants’
continuing acts of infringement. The hardships that would be imposed upon Defendants by an
injunction are less than those faced by Gemalto should an injunction not issue. Furthermore, the
public interest would be served by issuance of an injunction.

42. As a result of Defendants” acts of infringement, Gemalto has suffered and will
continue to suffer damages in an amount to be proved at trial.

DEMAND FOR JURY TRIAL

43. Pursuant to Rule 38 of the Federal Rules of Civil Procedure, Plaintiff hereby
demands a trial by jury for all issues triable to a jury.

PRAYER FOR RELIEF

WHEREFORE, Gemalto requests a judgment:

10

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 11 of 12

A That Defendants have infringed United States Patents Nos. 6,308,317, 7,117,485,
and 7,818,727,

B. That United States Patent No. 6,308,317, 7,117,485, and 7,818,727 are valid and
enforceable in law;

C. Awarding to Gemalto its damages caused by Defendants’ infringement of United
States Patents Nos. 6,308,317, 7,117,485, and 7,818,727, including an assessment of pre-
judgment and post-judgment interest and costs;

D. Entering a permanent injunction against Defendants, their officers, agents,
servants, employees, attorneys, all parent and subsidiary corporations and affiliates, their assigns
and successors in interest, and those persons in active concert or participation with any of them
who receive notice of the injunction, enjoining them from continuing acts of infringement of
United States Patents Nos. 6,308,317, 7,117,485, and 7,818,727, including without limitation
from continuing to make, use, sell and/or offer for sale in the United States or import into the
United States the Android SDK, Android Applications and Android Devices;

E. That this is an exceptional case and awarding to Gemalto its costs, expenses and
reasonable attorneys’ fees pursuant to 35 U.S.C. § 285;

F. That this Court award Gemalto enhanced/treble damages to which it is entitled
pursuant to 35 U.S.C. § 284; and

G. Awarding to Gemalto such other and further relief as this Court may deem just

and proper.

11

Dallas 311302v3

Case 6:10-cv-00561 Document1 Filed 10/22/10 Page 12 of 12

Date: October 22, 2010

Dallas 311302v3

12

Respectfully submitted,

/s/ Sam Baxter

Sam Baxter

Texas State Bar No. 01938000
sbaxter@mckoolsmith.com
MCKOOL SMITH, P.C.

104 East Houston, Suite 300
Marshall, Texas 75670
Telephone: (903) 923-9000
Facsimile: (903) 923-9099

Robert A. Cote
rcote@mckoolsmith.com
Shahar Harel
sharel@mckoolsmith.com
Kevin Schubert
kschubert@mckoolsmith.com
MCKOOL SMITH, P.C.
One Bryant Park, 47th Floor
New York, New York 10036
Telephone: (212) 402-9400
Facsimile: (212) 402-9444

Peter J. Ayers

Texas State Bar No. 24009882
payers@mckoolsmith.com
Geoffrey L. Smith

Texas State Bar No. 24041939
gsmith@mckoolsmith.com
MCKOOL SMITH, P.C.

300 W. 6th St., Ste. 1700
Austin, Texas 78701
Telephone: (512) 692-8700
Facsimile: (512) 692-8744

ATTORNEYS FOR PLAINTIFF
GEMALTO S.A.

Case 6:10-cv-00561 Document ﬂml |||m|ﬁ“mﬂmllﬂ

(AR A

US006308317B1
a2 United States Patent (10) Patent No.: US 6,308,317 Bl
Wilkinson et al. 5) Date of Patent: Oct. 23, 2001
(54) USING A HIGH LEVEL PROGRAMMING 5,689,565 11/1997 Spies et al. .cooevrunrenrerrrennnns 380/25
LANGUAGE WITH A MICROCONTROLILER 5,692,132 11/1997 HOZanccooveveienirineiieiennns 3957227
5,734,150 3/1998 Brown et al.ccceverereennene 235/381
(75) TInventors: Timothy J. Wilkinson, London (GB); 5,742,756 * 4/1998 Dillaway et al. ooooovvvvrivvinnnns 713/200
Scott B. Guthery, Belmont, MA (US) 376541 61998 Gundiach et o 5518701
Ksheerabdhi Krishna; Michael A. TSI 01098 Dethlofl oo RS AR
Montgomery, both of Cedar Park, TX 5.815.657 * 11/1998 Williams et al. ...oorooooo..... 713/200
(Us) 5841866 * 1171998 Bruwer et al. .oooovvrvoovesvsrrssr. 380/23
. . 5,844,218 * 12/1998 Kawan et al. ...cccovvverereennne 235/380
(73) Assignee: Schlumberger Technologies, Inc., 5,889,941 * 3/1999 Tushie et al. ..coooovvverrrrnnnen. 713/200
Austin, TX (US) 5,915,226 * 6/1999 Martineauccccoeeevevvennene 455/558
5,923,884 * 7/1999 Peyret et al.coevviiriininnnn. 395/712
(*) Notice: Sub]ect. to any dlsclalmer,. the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. 0829 828 A1 3/1998 (EP).
0889393 A2 1/1999 (EP) .
(21) Appl. No.: 08/957,512 0427 465 A2 S/1999 (EP) .
2191 029 A 12/1987 (GB) .
(22) Filed: Oct. 24, 1997 2261973A 6/1993 (GB).
WO 98/19237 5/1998 (WO) .
Related U.S. Application Data OTHER PUBLICATIONS
(60) Provisional application No. 60/029,057, filed on Oct. 25,
1996. Rodley, Writing Java Applets, Corolis Group Books, Chap-
(51) It CL7 s GOGF 13/00 tor L Apr. 15, 1996.7 o
(52) US.Cl 7175 Kung et al., Developing an Object—Oriented Software Test-
ST T ing and Maintaincane Enviroment, Oct. 1995, pp. 75-87.*
(58) Field of Search ... 395/705; 717/5 Cheng et al, Securing the Internet Protocol, Sep. 1995, p.
Y
(56) References Cited 257.
List continued on next page.
U.S. PATENT DOCUMENTS bag
o Primary Examiner—Mark R. Powell
4,256,955 3/1981 Giraud et al. .coccevveevveereennne 235/380 Assistant Examiner—John Q. Chavis
4,650,975 * 3/1987 Kitchenercecevevveenunne 235/375 . . .
4777355 10/1988 Takahira . 914)MAtt01rney, Agent, or Firm—Pehr B. Jansson; Danita J.
4,797,543 1/1989 Watanabeoeeocoveerromnn. 235/492 - viaseles
4,877,947 10/1989 MOoTricoceueueeee ... 235/381 57) ABSTRACT
5,064,999 11/1991 Okamoto et al. .. 235/379
5,195,130 3/1993 Weiss et al. .ococvrviviiniennns 379/98 An integrated circuit card is used with a terminal. The
5,406,380 . 4/1995 Teter - 358/332 integrated circuit card includes a memory that stores an
5,500,517 : 3/1996 CaglioStrocoovvvveevvinnnnne 235/486 interpreter and an application that has a high level program-
5,537,474 * 7/1996 Brown et al. wooooooovoovvovesiesen. 38023 oo language format. A processor of the card is configured
5,544,086 8/1996 Davis et al. 364/408 he i S h lication f
5.550,919 8/1996 Kowalski 380/23 tQ use the 1nterpreter to 1qterpret the application for execu-
5,590,197 * 12/1996 Chen et al. 380/24 tlgn and to use a communicator of the card to communicate
5,604,802 2/1997 HolloWayc.oocrseersimmmren 380/24 with the terminal.
5,613,012 3/1997 Hoffman et al.ccovveeeenene 382/115
5,650,761 7/1997 Gomm et al. ..c.oovervuerirennnne 235/381 87 Claims, 23 Drawing Sheets

Griginal byte codes

60 61

PASS 1: List all jumps and their i]

Translate
specific
byte codes?,

62

PASS 2; Convert specific byle codes inlo generic byte codes|

64

L

PASS 3: Relink References]

66

[PASS 4: Modify Java byte codes to Card JVM byle codes

67

[PASS 5: Readjust Jumps

1

Wodified byte coded

6%

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 2 of 45

US 6,308,317 Bl
Page 2

OTHER PUBLICATIONS

Sandhu et al., Authentication,Access Control, and Audit,
Mar. 1996, pp. 241-243.*

Gosling, Audio/Video Sequence of Invited Presentations,
May, 1996, pp. 1-4.*

Blundon, The Center of the universe is a database, Jul. 1996,
pp. 1-5.*

Wingfield et al., News: Java Brews Trouble for Microsoft,
Nov. 1995, pp. 1-2.*

0 427 465 A3—Examiner’s search report for 0 427 465 A2
May 15, 1991.

0 356 237 A3—Examiner’s search report for 0 356 237 A2
Feb.28, 1990.

PCT International Search Report dated Mar. 15, 1999.
PCT International Search Report, Dec. 29,1998, 7 pages.
PCT/US97/1899—Search Report.

* cited by examiner

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 3 of 45

U.S. Patent Oct. 23, 2001 Sheet 1 of 23 US 6,308,317 Bl

Integrated Circuit Card

10~ 16 _
Card Java Virtual Machine
(Card JVM)

12a)
N Communicator

h

\ 4

14 12b Terminal
N \ Communicator

Terminal

FIGURE 1

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 4 of 45

U.S. Patent Oct. 23, 2001 Sheet 2 of 23 US 6,308,317 Bl

Java
Application
20b

20

JAVA JAVA /%2

CODE FOR CODE FOR Java

CLASS A CLASS B ava

(A.JAVA) (B.JAVA) .| Application
Development
Environment
JAVA
CODE FOR
CLASS C

(C.JAVA)

Application
Class Files
24b

COMPILED COMPILED L2
CODE FOR CODE FOR
CLASS A CLASS B Card
(A.CLASS) (B.CLASS) » Class File
Converter
COMPILED
CODE FOR
CLASS C
(C.CLASS)
ord Va 28 Va 10
Class File
(contains Card > In?i?éﬁ?te |
Classes Loader Card
A, B, and C)

FIGURE 2

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 5 of 45

U.S. Patent Oct. 23, 2001 Sheet 3 of 23 US 6,308,317 Bl

Application 24

Class Files

CODE FOR
CLASS A
(A.CLASS)

CODE FOR
CLASS B
(B.CLASS)

30

String To ID
Input

CODE FOR
Map

CLASS C
(C.CLASS)

26~ card
Class File
Converter

Card

Class File
(contains _
Classes Stl’(l;gt To ID
A, B, and C) utput

Map

FIGURE 3

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 6 of 45

U.S. Patent Oct. 23, 2001

41;

42

43

44

Application Class Files

/ | Class File Information

Sheet 4 of 23 US 6,308,317 B1
Va 24
T Card Class File Va 27
] - 46

" Class File Information

ﬁH » Card Class File Information}

\

Class Constant Pool -
Contains all the strings
comesponding to Fields
methods and Class
names refemed to in the
Java program

Optimized Card Class - 47
Constant Pool where *
each string is replaced
byanID

e t—

Card Class, Card Field, - 48

Class, field, Interface
and Method Information

Card Interface and Card |
Method Information

Attribute Information Card Attribute Information §~ 49
«Source File Attribute . Code Attribute
" (optionally translated)
+Constant Value Attnibute
Code Attribute !
<+Exceptions Aftribute

<+Line Number Table Attribute

+|_ocal Variable Table Attribute

+Optional Vendor Attributes

/T 24b,Cc

—_—

45
¥ —{ Eliminated |

X 24a

FIGURE 4

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 7 of 45

U.S. Patent Oct. 23, 2001 Sheet 5 of 23 US 6,308,317 Bl

Va 56
Gather All Constant
Class NO Pool Entries

Files To
Process?

and
Modified byte codes

Select A Classfile Generate Card
! Va 51b Class File
Compact Constant Pool _ and
ompa onstant Foo /_ sie St“ng to ID map
il (if required)
Check For Unsupported Features
v /_ 51d

Discard Unnecessary Parts

Flag Errors

Unsupported and
Features Stop
Found? Conversion

/‘54

Modify The byte codes

y

FIGURE 5

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 8 of 45

U.S. Patent Oct. 23, 2001 Sheet 6 of 23 US 6,308,317 Bl

Original byte codes
60

v /61
PASS 1: List all jumps and their destinations
62
Translate
NO specific
byte codes?
Va 63
PASS 2: Convert specific byte codes into generic byte codes
g} /[64
PASS 3. Relink References
65
NO " Modify byte
codes?
Va 66
PASS 4: Modify Java byte codes to Card JVM byte codes
¢! /57
PASS 5: Readjust Jumps

68
Modified byte codes

FIGURE 6

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 9 of 45

U.S. Patent

Qe

Oct. 23, 2001

a 70

ILOAD_0

ILOAD_1

IFNE 1: .l

BIPUSH

w0 N 2

5

FIGURE 7

Sheet 7 of 23

US 6,308,317 Bl

/72

ILOAD

0

ILOAD

1

IFNE 2:

BIPUSH

5

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 10 of 45

U.S. Patent Oct. 23, 2001 Sheet 8 of 23 US 6,308,317 Bl
o
)
J T
DI o
2| =
m
A
[o) (o]
[o) (o]
o o o0
L
1’4
= -
-
o.
Q e
© c
Ny () N
O|o N C
n| ¥ 0O
- | = “ &)
()
c‘% | O Q
| O =
c o
— o)
QO
@)
v
™
[») [
0 o]
o] (o)

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 11 of 45

US 6,308,317 Bl

Sheet 9 of 23

Oct. 23, 2001

U.S. Patent

6 34N9Id
|00d luBIsuo) 9l sse|n pien |00d juelsuo) 9|l sse|n
s Vi
Be|4 (Jal al Be|4
€444 11004 poyapyl© © © >A>W mecw poylSIN|° ° °
9l Gl 14" €L o o o 6 16 06 68 o o o
(xepuj gl | (xapur) 68
OILLVLSIMOANI OILVLSIMOANI
6 -/ 06 /

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 12 of 45

U.S. Patent Oct. 23, 2001 Sheet 10 of 23 US 6,308,317 Bl
/100 /102
0: | ALOAD 43 0: | ALOAD 51
1: 0 1: 0
2: | ILOAD 21 2: | ILOAD 50
3: 1 3: 1
4: | IFNE 154 2: 4: | IFNE 27 2:
5: | BIPUSH 16 5: | BIPUSH 49
6: 5 6: S

FIGURE 10

Case 6:10-cv-00561

U.S. Patent Oct.

Document 1-1 Filed 10/22/10 Page 13 of 45

23,2001 Sheet 11 of 23 US 6,308,317 Bl

/-1 12 Va 116
ILOAD ILOAD_B
*t
8 8
114 118
R 0 ___.
_____ O)] =] o o
_____ O — e = -
5 5
Word-Based Operand Byte-Based Operand
Stack Stack

FIGURE 11

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 14 of 45

US 6,308,317 Bl

Sheet 12 of 23

Oct. 23, 2001

U.S. Patent

¢l 3¥NOId

wajsAs aji4 psed

y4
NOILVOINddY
adyvo

wa)sAg bBunesadp piedn

NOILVOIlddY| |NOILYOIlddV

A9zi
suopeo|ddy

9zl pied

2L </

pieDd Jnaa) pajelbau)

zzL
|0J]U0D)
) uopnosx3y | 1opeo
X puy) plen
Buipeo
0zL 8z /
\- 04

US 6,308,317 Bl

Sheet 13 of 23

Oct. 23, 2001

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 15 of 45

U.S. Patent

€1 34N9Id
[eulua | pJeD 1naliD palelbaju|
Jojesiunuiwo) | » Jojeaiunwiwo) l—»{ wa)sAg Bunesad
euILLIB) \ Jedl 9 ISAS w 8dQ pie)d
a’/ T ez 2z
L_m\ﬂ‘:n_ o ’ AT pied
lojeslunwiwon N 9,/ 1
zer / | 7
Januq pien
jnong pejesbaju) | 602
~v,3.\ + NOILVYOIlddV
ayvo
uones)ddy
|jeuius} suoneslddy
9zl pied
9¢
g 01 |
b wajshg 8ji4 pJed

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 16 of 45

US 6,308,317 Bl

Sheet 14 of 23

Oct. 23, 2001

U.S. Patent

ELIDE eoly weiboid NON 44! waysAg Bupelado pied
qor 8yl i WAl PIED
A\ / [ele]] N\
Gyl
uonoNJsy| awl] - uny
MUARN Ngps | |05\ dooT yojedsiq uononisul B
NOILVYOIlddVY a3axid >
024 ~[1ou0D uopnoaxg puy Bulpeo-
zri~ INOdd33 PieD
ealy welbold NOYdIT ori / WNOH PIED
/]
674" | [Xavaarissvio Iiavavoll{—i» ol VY pied
oLpL ‘ Gro -
671~ | [@NOILYDiddY 31avavo1 H—1» S9|qeueA
A wa)sAg
evpL-| !
661~
[V NOILVYO1ddY 31avavo } »
F 3oBIS WA
sp1 /| wershs apy Mmi
desH WOMdaZ] v r APRIS HEIRES
e9ri =i e N A deaH WVY N\ opp,

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 17 of 45

U.S. Patent

Oct. 23, 2001

Sheet 15 of 23 US 6,308,317 B1

120

Execution Control

126z

Card Application

! /152
Find Entry point
class ID/method ID
| / 153
Interpret method
154
Unhandlable NO
Exception/Error
encountered !
YES
] / 155

Report Success

156

Stop
Card JVM
and send Error
to terminal

FIGURE 15

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 18 of 45

U.S. Patent Oct. 23, 2001 Sheet 16 of 23 US 6,308,317 Bl

160
Method

1 /161
Set VM stack Parameters Set Card JVM program Counter

162

Check method flag, if native?

Va 163

A 4

Handle native method
NO Place return value on
VM Stack

< l

inished interpreting method?

<
-

166~ | A branch to be taken?
Empty VM Stack NG 165a\ Prepare
167 for branch
< |
Retrieve next byte code/type information /165b
v
Check VM stack state (Pass 3 security checks) - 765¢
4
Execute byte code |/ 165d
¥
Set VM stack state /- 765¢
— v 165
Retire the byte code
I

FIGURE 16

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 19 of 45

U.S. Patent Oct. 23, 2001 Sheet 17 of 23
171
a byte code
il Va 172

execute bytecode

173
Resource

US 6,308,317 Bl

e . NO
limitation
encountered?
Va 175
Report Success
156

FIGURE 17

Stop
Card JVM
and
Send error to
terminal

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 20 of 45

U.S. Patent Oct. 23, 2001 Sheet 18 of 23 US 6,308,317 Bl

160
Method
/161

Set VM stack Parameters Set Card JVM program Counter

162

YES

Check method flag, if native?

/‘163

Handle native method
NO Place return value on
VM Stack

JV\%\‘
inished interpreting method*

166\ ! A branch to be taken?
fsr:pty VM Stack = 1658 f (f’rrgf;;gh
EXS:;?,I;O | Retriev; next byte code /- 1650
Exec+ute byte code /-~ 165d
v

FIGURE 18

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 21 of 45

US 6,308,317 Bl

Sheet 19 of 23

Oct. 23, 2001

U.S. Patent

61 34NOI4
9 g v
Ayjuaspi Auap Ayjusp]
t _ 206/ \ 1 _qo6} \ 1 _ep6
_ 061
Z A X
uoleolddy uoneolddy uoneoijddy
pieD pien pieD
_z9z4 _ A9z} \x9z1
\ 9zt

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 22 of 45

U.S. Patent Oct. 23, 2001 Sheet 20 of 23 US 6,308,317 Bl

200 N\

ot 1

Run Program C‘ Appllgatlon

/‘1 90c

Enter PIN of A

Access Not

Allowed ,-
204~ L | 202~
Other Identity
Files C's Files

FIGURE 20

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 23 of 45

U.S. Patent Oct. 23, 2001 Sheet 21 of 23 US 6,308,317 Bl

10ﬂ\\

210 214

FIGURE 21

220

FIGURE 22

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 24 of 45

U.S. Patent Oct. 23, 2001 Sheet 22 of 23 US 6,308,317 Bl

230

)
__

210

FIGURE 23

240

FIGURE 24

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 25 of 45

US 6,308,317 Bl

Sheet 23 of 23

U.S. Patent

Oct. 23, 2001

) N — =
%0 N —
m =—io6s 0 (UL g =2

° 1l ﬂm
g wm D%ngmo oo
nooﬁ_oggo owkﬂogwww i

Nmml\ oilc

I s}

M

g¢ 3dNOId

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 26 of 45

US 6,308,317 B1

1

USING A HIGH LEVEL PROGRAMMING
LANGUAGE WITH A MICROCONTROLLER

Under 35 U.S.C. § 119(e), this application claims benefit
of prior U.S. provisional application Serial No. 60/029,057,
filed Oct. 25, 1996.

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

This invention relates in general to the field of
programming, and more particularly to using a high level
programming language with a smart card or a microcontrol-
ler.

Software applications written in the Java high-level pro-
gramming language have been so designed that an applica-
tion written in Java can be run on many different computer
brands or computer platforms without change. This is
accomplished by the following procedure. When a Java
application is written, it is compiled into “Class” files
containing byte codes that are instructions for a hypothetical
computer called a Java Virtual Machine. An implementation
of this virtual machine is written for each platform that is
supported. When a user wishes to run a particular Java
application on a selected platform, the class files compiled
from the desired application is loaded onto the selected
platform. The Java virtual machine for the selected platform
is run, and interprets the byte codes in the class file, thus
effectively running the Java application.

Java is described in the following references which are
hereby incorporated by reference: (1) Arnold, Ken, and
James Gosling, “The Java Programming Language,”
Addison-Wesley, 1996; (2) James Gosling, Bill Joy, and Guy
Steele, “The Java Language Specification,” Sun
Microsystems, 1996, (web site: http://java.sun.com/doc/
language_ specification); (3) James Gosling and Henry
McGilton, “The Java Language Environment: A White
Paper,” Sun Microsystems, 1995 (web site: http://
java.sun.com/doc/language environment/); and (4) Tim
Lindholm and Frank Yellin, “The Java Virtual Machine
Specification,” Addison-Wesley, 1997. These texts among
many others describe how to program using Java.

In order for a Java application to run on a specific
platform, a Java virtual machine implementation must be
written that will run within the constraints of the platform,
and a mechanism must be provided for loading the desired
Java application on the platform, again keeping within the
constraints of this platform.

Conventional platforms that support Java are typically
microprocessor-based computers, with access to relatively
large amounts of memory and hard disk storage space. Such
microprocessor implementations frequently are used in
desktop and personal computers. However, there are no
conventional Java implementations on microcontrollers, as
would typically be used in a smart card.

Microcontrollers differ from microprocessors in many
ways. For example, a microprocessor typically has a central
processing unit that requires certain external components
(e.g., memory, input controls and output controls) to func-
tion properly. A typical microprocessor can access from a
megabyte to a gigabyte of memory, and is capable of

10

15

20

25

30

35

40

50

55

60

65

2

processing 16, 32, or 64 bits of information or more with a
single instruction. In contrast to the microprocessor, a micro-
controller includes a central processing unit, memory and
other functional elements, all on a single semiconductor
substrate, or integrated circuit (e.g., a “chip”). As compared
to the relatively large external memory accessed by the
microprocessor, the typical microcontroller accesses a much
smaller memory. A typical microcontroller can access one to
sixty-four kilobytes of built-in memory, with sixteen kilo-
bytes being very common.

There are generally three different types of memory used:
random access memory (RAM), read only memory (ROM),
and electrically erasable programmable read only memory
(EEPROM). In a microcontroller, the amount of each kind
of memory available is constrained by the amount of space
on the integrated circuit used for each kind of memory.
Typically, RAM takes the most space, and is in shortest
supply. ROM takes the least space, and is abundant.
EEPROM is more abundant than RAM, but less than ROM.

Each kind of memory is suitable for different purposes.
Although ROM is the least expensive, it is suitable only for
data that is unchanging, such as operating system code.
EEPROM is useful for storing data that must be retained
when power is removed, but is extremely slow to write.
RAM can be written and read at high speed, but is expensive
and data in RAM is lost when power is removed. A micro-
processor system typically has relatively little ROM and
EEPROM, and has 1 to 128 megabytes of RAM, since it is
not constrained by what will fit on a single integrated circuit
device, and often has access to an external disk memory
system that serves as a large writable, non-volatile storage
arca at a lower cost than EEPROM. However, a microcon-
troller typically has a small RAM of 0.1 to 2.0 K, 2K to 8K
of EEPROM, and 8K-56K of ROM.

Due to the small number of external components required
and their small size, microcontrollers frequently are used in
integrated circuit cards, such as smart cards. Such smart
cards come in a variety of forms, including contact-based
cards, which must be inserted into a reader to be used, and
contactless cards, which need not be inserted. In fact,
microcontrollers with contactless communication are often
embedded into specialized forms, such as watches and rings,
effectively integrating the functionality of a smart card in an
ergonomically attractive manner.

Because of the constrained environment, applications for
smart cards are typically written in a low level programming
language (e.g., assembly language) to conserve memory.

The integrated circuit card is a secure, robust, tamper-
resistant and portable device for storing data. The integrated
circuit card is the most personal of personal computers
because of its small size and because of the hardware and
software data security features unique to the integrated
circuit card.

The primary task of the integrated circuit card and the
microcontroller on the card is to protect the data stored on
the card. Consequently, since its invention in 1974, inte-
grated circuit card technology has been closely guarded on
these same security grounds. The cards were first used by
French banks as debit cards. In this application, before a
financial transaction based on the card is authorized, the card
user must demonstrate knowledge of a 4-digit personal
identification number (PIN) stored in the card in addition to
being in possession of the card. Any information that might
contribute to discovering the PIN number on a lost or stolen
card was blocked from public distribution. In fact, since
nobody could tell what information might be useful in this

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 27 of 45

US 6,308,317 B1

3

regard, virtually all information about integrated circuit
cards was withheld.

Due to the concern for security, applications written for
integrated circuit cards have unique properties. For example,
each application typically is identified with a particular
owner or identity. Because applications typically are written
in a low-level programming language, such as assembly
language, the applications are written for a particular type of
microcontroller. Due to the nature of low level programming
languages, unauthorized applications may access data on the
integrated circuit card. Programs written for an integrated
circuit card are identified with a particular identity so that if
two identities want to perform the same programming
function there must be two copies of some portions of the
application on the microcontroller of the integrated circuit
card.

Integrated circuit card systems have historically been
closed systems. An integrated circuit card contained a dedi-
cated application that was handcrafted to work with a
specific terminal application. Security checking when an
integrated circuit card was used consisted primarily of
making sure that the card application and the terminal
application were a matched pair and that the data on the card
was valid.

As the popularity of integrated circuit cards grew, it
became clear that integrated circuit card users would be
averse to carrying a different integrated circuit card for each
integrated circuit card application. Therefore, multiple coop-
erating applications began to be provided on single provider
integrated circuit cards. Thus, for example, an automated
teller machine (ATM) access card and a debit card may
coexist on a single integrated circuit card platform.
Nevertheless, this was still a closed system since all the
applications in the terminal and the card were built by one
provider having explicit knowledge of the other providers.

The paucity of information about integrated circuit
cards—particularly information about how to communicate
with them and how to program them—has impeded the
general application of the integrated circuit card. However,
the advent of public digital networking (e.g., the Internet and
the World Wide Web) has opened new domains of applica-
tion for integrated circuit cards. In particular, this has lead to
a need to load new applications on the card that do not have
explicit knowledge of the other providers, but without the
possibility of compromising the security of the card.
However, typically, this is not practical with conventional
cards that are programmed using low level languages.

SUMMARY OF THE INVENTION

In general, in one aspect, the invention features an inte-
grated circuit card for use with a terminal. The integrated
circuit card includes a memory that stores an interpreter and
an application that has a high level programming language
format. A processor of the card is configured to use the
interpreter to interpret the application for execution and to
use a communicator of the card to communicate with the
terminal.

Among the advantages of the invention are one or more
of the following. New applications may be downloaded to a
smart card without compromising the security of the smart
card. These applications may be provided by different com-
panies loaded at different times using different terminals.
Security is not compromised since the applications are
protected against unauthorized access of any application
code or data by the security features provided by the Java
virtual machine. Smart card applications can be created in

10

15

20

25

30

35

40

45

50

55

60

65

4

high level languages such as Java and FEiffel, using powerful
mainstream program development tools. New applications
can be quickly prototyped and downloaded to a smart card
in a matter of hours without resorting to soft masks. Embed-
ded systems using microcontrollers can also gain many of
these advantages for downloading new applications, high
level program development, and rapid prototyping by mak-
ing use of this invention.

Implementations of the invention may include one or
more of the following. The high level programming lan-
guage format of the application may have a class file format
and may have a Java programming language format. The
processor may be a microcontroller. At least a portion of the
memory may be located in the processor.

The application may have been processed from a second
application that has a string of characters, and the string of
characters may be represented in the first application by an
identifier (e.g., an integer).

The processor may be also configured to receive a request
from a requester (e.g., a processor or a terminal) to access an
element (e.g., an application stored in the memory, data
stored in the memory or the communicator) of the card, after
receipt of the request, interact with the requester to authen-
ticate an identity of the requester, and based on the identity,
selectively grant access to the element.

The memory may also store an access control list for the
element. The access control list furnishes an indication of
types of access to be granted to the identity, and based on the
access control list, the processor selectively grants specific
types of access (e.g., reading data, writing data, appending
data, creating data, deleting data or executing an application)
to the requester.

The application may be one of a several applications
stored in the memory. The processor may be further con-
figured to receive a request from a requester to access one of
the plurality of applications; after receipt of the request,
determine whether said one of the plurality of applications
complies with a predetermined set of rules; and based on the
determination, selectively grant access to the requester to
said one of the plurality of applications. The predetermined
rules provide a guide for determining whether said one of the
plurality of applications accesses a predetermined region of
the memory. The processor may be further configured to
authenticate an identity of the requester and grant access to
said one of the plurality of applications based on the identity.

The processor may be also configured to interact with the
terminal via the communicator to authenticate an identity;
determine if the identity has been authenticated; and based
on the determination, selectively allow communication
between the terminal and the integrated circuit card.

The communicator and the terminal may communicate
via communication channels. The processor may also be
configured to assign one of the communication channels to
the identity when the processor allows the communication
between the terminal and the integrated circuit card. The
processor may also be configured to assign a session key to
the assigned communication channel and use the session key
when the processor and the terminal communicate via the
assigned communication channel.

The terminal may have a card reader, and the communi-
cator may include a contact for communicating with the card
reader. The terminal may have a wireless communication
device, and the communicator may include a wireless trans-
ceiver for communicating with the wireless communication
device. The terminal may have a wireless communication
device, and the communicator may include a wireless trans-
mitter for communicating with the wireless communication
device.

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 28 of 45

US 6,308,317 B1

5

In general, in another aspect, the invention features a
method for use with an integrated circuit card and a terminal.
The method includes storing an interpreter and at least one
application having a high level programming language for-
mat in a memory of the integrated circuit card. A processor
of the integrated circuit card uses the interpreter to interpret
the at least one application for execution, and the processor
uses a communicator of the card when communicating
between the processor and the terminal.

In general, in another aspect, the invention features a
smart card. The smart card includes a memory that stores a
Java interpreter and a processor that is configured to use the
interpreter to interpret a Java application for execution.

In general, in another aspect, the invention features a
microcontroller that has a semiconductor substrate and a
memory located in the substrate. A programming language
interpreter is stored in the memory and is configured to
implement security checks. A central processing unit is
located in the substrate and is coupled to the memory.

Implementations of the invention may include one or
more of the following. The interpreter may be a Java byte
code interpreter. The security checks may include establish-
ing firewalls and may include enforcing a sandbox security
model.

In general, in another aspect, the invention features a
smart card that has a programming language interpreter
stored in a memory of the card. The interpreter is configured
to implement security check. A central processing unit of the
card is coupled to the memory.

In general, in another aspect, the invention features an
integrated circuit card that is used with a terminal. The card
includes a communicator and a memory that stores an
interpreter and first instructions of a first application. The
first instructions have been converted from second instruc-
tions of a second application. The integrated circuit card
includes a processor that is coupled to the memory and is
configured to use the interpreter to execute the first instruc-
tions and to communicate with the terminal via the com-
municator.

Implementations of the invention may include one or
more of the following. The first and/or second applications
may have class file format(s). The first and/or second
applications may include byte codes, such as Java byte
codes. The first instructions may be generalized or renum-
bered versions of the second instructions. The second
instructions may include constant references, and the first
instructions may include constants that replace the constant
references of the second instructions. The second instruc-
tions may include references, and the references may shift
location during the conversion of the second instructions to
the first instructions. The first instructions may be relinked
to the references after the shifting. The first instructions may
include byte codes for a first type of virtual machine, and the
second instructions may include byte codes for a second
type of virtual machine. The first type is different from the
second type.

In general, in another aspect, the invention features a
method for use with an integrated circuit card. The method
includes converting second instructions of a second appli-
cation to first instructions of a first application; storing the
first instructions in a memory of the integrated circuit card;
and using an interpreter of the integrated circuit card to
execute the first instructions.

In general, in another aspect, the invention features an
integrated circuit for use with a terminal. The integrated
circuit card has a communicator that is configured to com-

10

20

25

30

35

40

45

50

55

60

6

municate with the terminal and a memory that stores a first
application that has been processed from a second applica-
tion having a string of characters. The string of characters
are represented in the first application by an identifier. The
integrated circuit card includes a processor that is coupled to
the memory. The processor is configured to use the inter-
preter to interpret the first application for execution and to
use the communicator to communicate with the terminal.

In general, in another aspect, the invention features a
method for use with an integrated circuit card and a terminal.
The method includes processing a second application to
create a first application. The second application has a string
of characters. The string of characters is represented by an
identifier in the second application. An interpreter and the
first application are stored in a memory of the integrated
circuit card. A processor uses an interpreter to interpret the
first application for execution.

In general, in another aspect, the invention features a
microcontroller that includes a memory which stores an
application and an interpreter. The application has a class file
format. A processor of the microcontroller is coupled to the
memory and is configured to use the interpreter to interpret
the application for execution.

In implementations of the invention, the microcontroller
may also include a communicator that is configured to
communicate with a terminal.

In general, in another aspect, the invention features a
method for use with an integrated circuit card. The method
includes storing a first application in a memory of the
integrated circuit card, storing a second application in the
memory of the integrated circuit card, and creating a firewall
that isolates the first and second applications so that the
second application cannot access either the first application
or data associated with the first application.

In general, in another aspect, the invention features an
integrated circuit card for use with a terminal. The integrated
circuit card includes a communicator that is configured to
communicate with the terminal, a memory and a processor.
The memory stores applications, and each application has a
high level programming language format. The memory also
stores an interpreter. The processor is coupled to the memory
and is configured to: a.) use the interpreter to interpret the
applications for execution, b.) use the interpreter to create a
firewall to isolate the applications from each other, and c.)
use the communicator to communicate with the terminal.

Other advantages and features will become apparent from
the following description and from the claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram of an integrated card system.

FIG. 2 is a flow diagram illustrating the preparation of
Java applications to be downloaded to an integrated circuit
card.

FIG. 3 is a block diagram of the files used and generated
by the card class file converter.

FIG. 4 is a block diagram illustrating the transformation
of application class file(s) into a card class file.

FIG. 5 is a flow diagram illustrating the working of the
class file converter.

FIG. 6 is a flow diagram illustrating the modification of
the byte codes.

FIG. 7 is a block diagram illustrating the transformation
of specific byte codes into general byte codes.

FIG. 8 is a block diagram illustrating the replacement of
constant references with constants.

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 29 of 45

US 6,308,317 B1

7

FIG. 9 is a block diagram illustrating the replacement of
references with their updated values.

FIG. 10 is a block diagram illustrating renumbering of
original byte codes.

FIG. 11 is a block diagram illustrating translation of
original byte codes for a different virtual machine architec-
ture.

FIG. 12 is a block diagram illustrating loading applica-
tions into an integrated circuit card.

FIG. 13 is a block diagram illustrating executing appli-
cations in an integrated circuit card.

FIG. 14 is a schematic diagram illustrating memory
organization for ROM, RAM and EEPROM.

FIG. 15 is a flow diagram illustrating the overall archi-
tecture of the Card Java virtual machine.

FIG. 16 is a flow diagram illustrating method execution in
the Card Java virtual machine with the security checks.

FIG. 17 is a flow diagram illustrating byte code execution
in the Card Java virtual machine.

FIG. 18 is a flow diagram illustrating method execution in
the Card Java virtual machine without the security checks.

FIG. 19 is a block diagram illustrating the association
between card applications and identities.

FIG. 20 is a block diagram illustrating the access rights of
a specific running application.

FIG. 21 is a perspective view of a microcontroller on a
smart card.

FIG. 22 is a perspective view of a microcontroller on a
telephone.

FIG. 23 is a perspective view of a microcontroller on a
key ring.

FIG. 24 is a perspective view of a microcontroller on a
ring.

FIG. 25 is a perspective view of a microcontroller on a
circuit card of an automobile.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 1, an integrated circuit card 10 (e.g., a
smart card) is constructed to provide a high level, Java-
based, multiple application programming and execution
environment. The integrated circuit card 10 has a commu-
nicator 12a that is configured to communicate with a ter-
minal communicator 12b of a terminal 14. In some
embodiments, the integrated circuit card 10 is a smart card
with an 8 bit microcontroller, 512 bytes of RAM, 4K bytes
of EEPROM, and 20K of ROM; the terminal communicator
12b is a conventional contact smart card reader; and the
terminal 14 is a conventional personal computer running the
Windows NT operating system supporting the personal
computer smart card (PC/SC) standard and providing Java
development support.

In some embodiments, the microcontroller, memory and
communicator are embedded in a plastic card that has
substantially the same dimensions as a typical credit card. In
other embodiments, the microcontroller, memory and com-
municator are mounted within bases other than a plastic
card, such as jewelry (e.g., watches, rings or bracelets),
automotive equipment, telecommunication equipment (e.g.,
subscriber identity module (SIM) cards), security devices
(e.g., cryptographic modules) and appliances.

The terminal 14 prepares and downloads Java applica-
tions to the integrated circuit card 10 using the terminal

5

10

15

20

25

30

35

40

45

50

55

60

65

8

communicator 12b. The terminal communicator 12b is a
communications device capable of establishing a commu-
nications channel between the integrated circuit card 10 and
the terminal 14. Some communication options include con-
tact card readers, wireless communications via radio fre-
quency or infrared techniques, serial communication
protocols, packet communication protocols, ISO 7816 com-
munication protocol, to name a few.

The terminal 14 can also interact with applications run-
ning in the integrated circuit card 10. In some cases, different
terminals may be used for these purposes. For example, one
kind of terminal may be used to prepare applications,
different terminals could be used to download the
applications, and yet other terminals could be used to run the
various applications. Terminals can be automated teller
machines (ATMs), point-of-sale terminals, door security
systems, toll payment systems, access control systems, or
any other system that communicates with an integrated
circuit card or microcontroller.

The integrated circuit card 10 contains a card Java virtual
machine (Card JVM) 16, which is used to interpret appli-
cations which are contained on the card 10.

Referring to FIG. 2, the Java application 20 includes three
Java source code files A.java 20a, B.java 20b, and C.java
20c. These source code files are prepared and compiled in a
Java application development environment 22. When the
Java application 20 is compiled by the development envi-
ronment 22, application class files 24 are produced, with
these class files A.class 24a, B.class 24b, and C.class 24c¢
corresponding to their respective class Java source code 20q,
20b, and 20c. The application class files 24 follow the
standard class file format as documented in chapter 4 of the
Java virtual machine specification by Tim Lindholm and
Frank Yellin, “The Java Virtual Machine Specification,”
Addison-Wesley, 1996. These application class files 24 are
fed into the card class file converter 26, which consolidates
and compresses the files, producing a single card class file
27. The card class file 27 is loaded to the integrated circuit
card 10 using a conventional card loader 28.

Referring to FIG. 3, the card class file converter 26 is a
class file postprocessor that processes a set of class files 24
that are encoded in the standard Java class file format,
optionally using a string to ID input map file 30 to produce
a Java card class file 27 in a card class file format. One such
card class file format is described in Appendix A which is
hereby incorporated by reference. In addition, in some
embodiments, the card class file converter 26 produces a
string to ID output map file 32 that is used as input for a
subsequent execution of the card class file converter.

In some embodiments, in order for the string to ID
mapping to be consistent with a previously generated card
class file (in the case where multiple class files reference the
same strings), the card class file converter 26 can accept
previously defined string to ID mappings from a string to ID
input map file 30. In the absence of such a file, the IDs are
generated by the card class file converter 26. Appendix B,
which is hereby incorporated by reference, describes one
possible way of implementing and producing the string to ID
input map file 30 and string to ID output map file 32 and
illustrates this mapping via an example.

Referring to FIG. 4, a typical application class file 24a
includes class file information 41; a class constant pool 42;
class, fields created, interfaces referenced, and method infor-
mation 43; and various attribute information 44, as detailed
in aforementioned Java Virtual Machine Specification. Note
that much of the attribute information 44 is not needed for

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 30 of 45

US 6,308,317 B1

9

this embodiment and is eliminated 45 by the card class file
converter 26. Eliminated attributes include SourceFile,
ConstantValue, Exceptions, LineNumberTable,
LocalVariableTable, and any optional vendor attributes. The
typical card class file 27 as described in Appendix A is
derived from the application class files 24 in the following
manner. The card class file information 46 is derived from
the aggregate class file information 41 of all application
class files 24a, 24b, and 24c. The card class file constant
pool 47 is derived from the aggregate class constant pool 42
of all application class files 24a, 24b, and 24c. The card
class, fields created, interfaces referenced, and method infor-
mation 48 is derived from the aggregate class, fields created,
interfaces referenced, and method information 43 of all
application class files 24a, 24b, and 24c¢. The card attribute
information 49 in this embodiment is derived from only the
code attribute of the aggregate attribute information 44 of all
application class files 24a, 24b, and 24c.

To avoid dynamic linking in the card, all the information
that is distributed across several Java class files 24a, 24b,
and 24c that form the application 24, are coalesced into one
card class file 27 by the process shown in the flowchart in
FIG. 5. The first class file to be processed is selected 51a.
The constant pool 42 is compacted 51b in the following
manner. All objects, classes, fields, methods referenced in a
Java class file 24a are identified by using strings in the
constant pool 42 of the class file 24a. The card class file
converter 26 compacts the constant pool 42 found in the Java
class file 244 into an optimized version. This compaction is
achieved by mapping all the strings found in the class file
constant pool 42 into integers (the size of which is micro-
controller architecture dependent). These integers are also
referred to as IDs. Each ID uniquely identifies a particular
object, class, field or method in the application 20.
Therefore, the card class file converter 26 replaces the
strings in the Java class file constant pool 42 with its
corresponding unique ID. Appendix B shows an example
application HelloSmartCard.java, with a table below illus-
trating the IDs corresponding to the strings found in the
constant pool of the class file for this application. The IDs
used for this example are 16-bit unsigned integers.

Next, the card class file converter 26 checks for unsup-
ported features 51c¢ in the Code attribute of the input Java
class file 24a. The Card JVM 16 only supports a subset of
the full Java byte codes as described in Appendix C, which
is hereby incorporated by reference. Hence, the card class
file converter 26 checks for unsupported byte codes in the
Code attribute of the Java class file 24a. If any unsupported
byte codes are found 52, the card class file converter flags an
error and stops conversion 53. The program code fragment
marked “A” in APPENDIX D shows how these spurious
byte codes are apprehended. Another level of checking can
be performed by requiring the standard Java development
environment 22 to compile the application 20 with a ‘-g’
flag. Based on the aforementioned Java virtual machine
specification, this option requires the Java compiler to place
information about the variables used in a Java application 20
in the LocalVariableTable attribute of the class file 24a. The
card class file converter 26 uses this information to check if
the Java class file 244 references data types not supported by
the Java card.

Next, the card class file converter 26 discards all the
unnecessary parts 51c of the Java class file 24a not required
for interpretation. A Java class file 24a stores information
pertaining to the byte codes in the class file in the Attributes
section 44 of the Java class file. Attributes that are not
required for interpretation by the card JVM 16, such as

10

15

20

25

30

35

40

45

50

55

60

65

10

SourceFile, ConstantValue, Exceptions, LineNumberTable,
and LocalvariableTable may be safely discarded 45. The
only attribute that is retained is the Code attribute. The Code
attribute contains the byte codes that correspond to the
methods in the Java class file 24a.

Modifying the byte codes 54 involves examining the
Code attribute information 44 for each method in the class
file, and modifying the operands of byte codes that refer to
entries in the Java class file constant pool 42 to reflect the
entries in the card class file constant pool 47. In some
embodiments, the byte codes are also modified, as described
below.

Modifying the byte codes 54 involves five passes (with
two optional passes) as described by the flowchart in FIG. 6.
The original byte codes 60 are found in the Code attribute 44
of the Java class file 24a being processed. The first pass 61
records all the jumps and their destinations in the original
byte codes. During later byte code translation, some single
byte code may be translated to dual or triple bytes. FIG. 7
illustrates an example wherein byte code ILOAD_0 is
replaced with two bytes, byte code ILOAD and argument 0.
When this is done, the code size changes, requiring adjust-
ment of any jump destinations which are affected. Therefore,
before these transformations are made, the original byte
codes 60 are analyzed for any jump byte codes and a note
made of their position and current destination. The program
code fragment marked “B” in Appendix D shows how these
jumps are recorded. Appendix D is hereby incorporated by
reference.

Once the jumps are recorded, if the optional byte code
translation is not being performed 62, the card class file
converter 26 may proceed to the third pass 64.

Otherwise, the card class file converter converts specific
byte codes into generic byte codes. Typically, the translated
byte codes are not interpreted in the Card JVM 16 but are
supported by converting the byte codes into equivalent byte
codes that can be interpreted by the Card JVM 16 (see FIG.
7). The byte codes 70 may be replaced with another seman-
tically equivalent but different byte codes 72. This generally
entails the translation of short single specific byte codes such
as ILOAD_ 0 into their more general versions. For example,
ILOAD_ 0 may be replaced by byte code ILOAD with an
argument 0. This translation is done to reduce the number of
byte codes translated by the Card JVM 16, consequently
reducing the complexity and code space requirements for the
Card JVM 16. The program code fragment marked “C” in
Appendix D shows how these translations are made. Note
that such translations increase the size of the resulting byte
code and force the re-computation of any jumps which are
affected.

In the third pass 64, the card class file converter rebuilds
constant references via elimination of the strings used to
denote these constants. FIG. 8 shows an example wherein
the byte code LDC 80 referring to constant “18” found via
an index in the Java class file 24a constant pool 42 may be
translated into BIPUSH byte code 82. In this pass the card
class file converter 26 modifies the operands to all the byte
codes that refer to entries in the Java class file constant pool
42 to reflect their new location in the card class file constant
pool 47. FIG. 9 shows an example wherein the argument to
a byte code, INVOKESTATIC 90, refers to an entry in the
Java class file constant pool 42 that is modified to reflect the
new location of that entry in the card class file constant pool
47. The modified operand 94 shows this transformation. The
program code fragment marked “D” in Appendix D shows
how these modifications are made.

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 31 of 45

US 6,308,317 B1

11

Once the constant references are relinked, if the optional
byte code modification is not being performed, the card class
file converter may proceed to the fifth and final pass 67.

Otherwise, the card class file converter modifies the
original byte codes into a different set of byte codes sup-
ported by the particular Card JVM 16 being used. One
potential modification renumbers the original byte codes 60
into Card JVM 16 byte codes (see FIG. 10). This renum-
bering causes the byte codes 100 in the original byte codes
60 to be modified into a renumbered byte codes 102. Byte
code ILOAD recognized by value 21 may be renumbered to
be recognized by value 50. This modification may be done
for optimizing the type tests (also known in prior art as Pass
3 checks) in the Card JVM 16. The program code fragment
marked “E” in Appendix D shows an implementation of this
embodiment. This modification may be done in order to
reduce the program space required by the Card JVM 16 to
interpret the byte code. Essentially this modification
regroups the byte codes into Card JVM 16 byte codes so that
byte codes with similar operands, results are grouped
together, and there are no gaps between Card JVM 16 byte
codes. This allows the Card JVM 16 to efficiently check
Card JVM 16 byte codes and validate types as it executes.

In some embodiments, the card class file converter modi-
fies the original byte codes 60 into a different set of byte
codes designed for a different virtual machine architecture,
as shown in FIG. 11. The Java byte code ILOAD 112
intended for use on a word stack 114 may be replaced by
Card JVM 16 byte code ILOAD__B 116 to be used on a byte
stack 118. An element in a word stack 114 requires allocat-
ing 4 bytes of stack space, whereas an element in the byte
stack 118 requires only one byte of stack space. Although
this option may provide an increase in execution speed, it
risks losing the security features available in the original
byte codes.

Since the previous steps 63, 64 or 66 may have changed
the size of the byte codes 60 the card class file converter 26
has to relink 67 any jumps which have been effected. Since
the jumps were recorded in the first step 61 of the card class
file converter 26, this adjustment is carried out by fixing the
jump destinations to their appropriate values. The program
code fragment marked “F” in Appendix D shows how these
jumps are fixed.

The card class file converter now has modified byte codes
68 that is equivalent to the original byte codes 60 ready for
loading. The translation from the Java class file 24a to the
card class file 27 is now complete.

Referring back to FIG. 5, if more class files 24 remain to
be processed 55 the previous steps 51a, 51b, 51¢, 52 and 54
are repeated for each remaining class file. The card class file
converter 26 gathers 56 the maps and modified byte codes
for the classes 24 that have been processed, places them as
an aggregate and generates 57 a card class file 27. If
required, the card class file converter 26 generates a string
to ID output map file 32, that contains a list of all the new
IDs allocated for the strings encountered in the constant pool
42 of the Java class files 24 during the translation.

Referring to FIG. 12, the card loader 28 within the
terminal 14 sends a card class file to the loading and
execution control 120 within the integrated circuit card 10
using standard ISO 7816 commands. The loading and execu-
tion control 120 with a card operating system 122, which
provides the necessary system resources, including support
for a card file system 124, which can be used to store several
card applications 126. Many conventional card loaders are
written in low level languages, supported by the card oper-

10

15

20

25

30

35

40

45

50

55

60

65

12

ating system 122. In the preferred embodiment, the boot-
strap loader is written in Java, and the integrated circuit card
10 includes a Java virtual machine to run this application. A
Java implementation of the loading and execution control
120 is illustrated in Appendix E which is hereby incorpo-
rated by reference. The loading and execution control 120
receives the card class file 26 and produces a Java card
application 126x stored in the card file system 126 in the
EEPROM of the integrated circuit card 10. Multiple Java
card applications 126x, 126y, and 126z can be stored in a
single card in this manner. The loading and execution
control 120 supports commands whereby the terminal 14
can select which Java card application to run immediately,
or upon the next card reset.

Referring to FIG. 13, upon receiving a reset or an execu-
tion command from the loading and execution control 120,
the Card Java Virtual Machine (Card JVM) 16 begins
execution at a predetermined method (for example, main) of
the selected class in the selected Java Card application 126z.
The Card JVM 16 provides the Java card application 126z
access to the underlying card operating system 122, which
provides capabilities such as I/O, EEPROM support, file
systems, access control, and other system functions using
native Java methods as illustrated in Appendix F which is
hereby incorporated by reference.

The selected Java card application 126z communicates
with an appropriate application in the terminal 14 using the
communicator 124 to establish a communication channel to
the terminal 14. Data from the communicator 12a to the
terminal 14 passes through a communicator driver 132 in the
terminal, which is specifically written to handle the com-
munications protocol used by the communicator 12a. The
data then passes to an integrated circuit card driver 134,
which is specifically written to address the capabilities of the
particular integrated circuit card 10 being used, and provides
high level software services to the terminal application 136.
In the preferred embodiment, this driver would be appro-
priate PC/SC Smartcard Service Provider (SSP) software.
The data then passes to the terminal application 136, which
must handle the capabilities provided by the particular card
application 126z being run. In this manner, commands and
responses pass back and forth between the terminal appli-
cation 136 and the selected card application 126z. The
terminal application interacts with the user, receiving com-
mands from the user, some of which are passed to the
selected Java card application 126z, and receiving responses
from the Java card application 126z, which are processed
and passed back to the user.

Referring to FIG. 14, the Card JVM 16 is an interpreter
that interprets a card application 126x. The memory
resources in the microcontroller that impact the Card JVM
16 are the Card ROM 140, Card RAM 141 and the Card
EEPROM 142. The Card ROM 140 is used to store the Card
JVM 16 and the card operating system 122. Card ROM 140
may also be used to store fixed card applications 140a and
class libraries 140b. Loadable applications 141a, 1415 and
libraries 141¢ may also be stored in Card RAM 141. The
Card JVM 16 interprets a card application 141a, 141b, or
140a. The Card JVM 16 uses the Card RAM to store the VM
stack 144a and system state variables 144b. The Card JVM
16 keeps track of the operations performed via the VM stack
144a. The objects created by the Card JVM 16 are either on
the RAM heap 144c, in the EEPROM heap 1464, or in the
file system 147.

All of the heap manipulated by the Card JVM 16 may be
stored in the Card RAM 141 as a RAM Heap 144c, or it may
be distributed across to the Card EEPROM 142 as a

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 32 of 45

US 6,308,317 B1

13

EEPROM Heap 146a. Card RAM 141 is also used for
recording the state of the system stack 148 that is used by
routines written in the native code of the microcontroller.
The Card JVM 16 uses the Card EEPROM 142 to store
application data either in the EEPROM heap 1464 or in the
file system 147. Application data stored in a file may be
manipulated via an interface to the card operating system
122. This interface is provided by a class library 140b stored
in Card ROM 140, by a loadable class library 141c stored in
Card EEPROM 142. One such interface is described in
Appendix F. Applications and data in the card are isolated by
a firewall mechanism 149.

To cope with the limited resources available on
microcontrollers, the Card JVM 16 implements a strict
subset of the Java programming language. Consequently, a
Java application 20 compiles into a class file that contains a
strict subset of Java byte codes. This enables application
programmers to program in this strict subset of Java and still
maintain compatibility with existing Java Virtual Machines.
The semantics of the Java byte codes interpreted by the Card
JVM 16 are described in the aforementioned Java Virtual
Machine Specification. The subset of byte codes interpreted
by the Card JVM 16 can be found in Appendix C. The card
class file converter 26 checks the Java application 20 to
ensure use of only the features available in this subset and
converts into a form that is understood and interpreted by the
Card JVM 16.

In other embodiments, the Card JVM 16 is designed to
interpret a different set or augmented set of byte codes 116.
Although a different byte code set might lead to some
performance improvements, departing from a strict Java
subset may not be desirable from the point of view of
security that is present in the original Java byte codes or
compatibility with mainstream Java development tools.

All Card JVM 16 applications 126 have a defined entry
point denoted by a class and a method in the class. This entry
point is mapped in the string to ID input map 30 and
assigned by the card class file converter 26. Classes, meth-
ods and fields within a Java application 20 are assigned IDs
by the card class file converter 26. For example, the ID
corresponding to the main application class may be defined
as FOO1 and the ID corresponding to its main method, such
as “main()V” could be defined as F002.

The overall execution architecture of the Card JVM is
described by the flowchart in FIG. 15. Execution of the Card
JVM 16 begins at the execution control 120, which chooses
a card application 126z to execute. It proceeds by finding
and assigning an entry point 152 (a method) in this card
application for the Card JVM 16 to interpret. The Card JVM
16 interprets the method 153. If the interpretation proceeds
successfully 154, the Card JVM 16 reports success 155
returning control back to the execution control 120. If in the
course of interpretation 153 the Card JVM 16 encounters an
unhandled error or exception (typically a resource limitation
or a security violation), the Card JVM 16 stops 156 and
reports the appropriate error to the terminal 14.

An essential part of the Card JVM 16 is a subroutine that
handles the execution of the byte codes. This subroutine is
described by the flowchart in FIG. 16. Given a method 160
it executes the byte codes in this method. The subroutine
starts by preparing for the parameters of this method 161.
This involves setting the VM stack 1444 pointer, VM stack
144a frame limits, and setting the program counter to the
first byte code of the method.

Next, the method flags are checked 162. If the method is
flagged native, then the method is actually a call to native

10

15

20

25

30

35

40

45

50

55

60

65

14

method code (subroutine written in the microcontroller’s
native processor code). In this case, the Card JVM 16
prepares for an efficient call 163 and return to the native code
subroutine. The parameters to the native method may be
passed on the VM stack 1444 or via the System stack 148.
The appropriate security checks are made and the native
method subroutine is called. On return, the result (if any) of
the native method subroutine is placed on the VM stack
1444 so that it may be accessed by the next byte code to be
executed.

The dispatch loop 164 of the Card JVM 16 is then entered.
The byte code dispatch loop is responsible for preparing,
executing, and retiring each byte code. The loop terminates
when it finishes interpreting the byte codes in the method
160, or when the Card JVM 16 encounters a resource
limitation or a security violation.

If a previous byte code caused a branch to be taken 165
the Card JVM prepares for the branch 165a. The next byte
code is retrieved 165b. In order to keep the cost of process-
ing each byte code down, as many common elements such
as the byte code arguments, length, type are extracted and
stored.

To provide the security offered by the security model of
the programming language, byte codes in the class file must
be verified and determined conformant to this model. These
checks are typically carried out in prior art by a program
referred to as the byte code verifier, which operates in four
passes as described in the Java Virtual Machine Specifica-
tion. To offer the run-time security that is guaranteed by the
byte code verifier, the Card JVM 16 must perform the checks
that pertain to the Pass 3 and Pass 4 of the verifier. This
checking can be bypassed by the Card JVM 16 if it can be
guaranteed (which is almost impossible to do) that the byte
codes 60 interpreted by the Card JVM 16 are secure. At the
minimum, code security can be maintained as long as object
references cannot be faked and the VM stack 1444 and local
variable bounds are observed. This requires checking the
state of the VM stack 144a with respect to the byte code
being executed.

To enforce the security model of the programming
language, a 256-byte table is created as shown in Appendix
G which is hereby incorporated by reference. This table is
indexed by the byte code number. This table contains the
type and length information associated with the indexing
byte code. It is encoded with the first 5 bits representing
type, and the last 3 bits representing length. The type and
length of the byte code is indexed directly from the table by
the byte code number. This type and length is then used for
checking as shown in Appendix H which is hereby incor-
porated by reference. In Appendix H, the checking process
begins by decoding the length and type from the table in
Appendix G which is hereby incorporated by reference. The
length is used to increment the program counter. The type is
used first for pre-execution checking, to insure that the data
types on the VM stack 1444 are correct for the byte code that
is about to be executed. The 256 bytes of ROM for table
storage allows the original Java byte codes to be run in the
Card JVM 16 and minimizes the changes required to the
Java class file to be loaded in the card. Additional Java byte
codes can be easily supported since it is relatively easy to
update the appropriate table entries.

In other embodiments, as shown in FIG. 10, the Java byte
codes in the method are renumbered in such a manner that
the byte code type and length information stored in the table
in Appendix H is implicit in the reordering. Appendix H is
hereby incorporated by reference. Consequently, the checks

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 33 of 45

US 6,308,317 B1

15

that must be performed on the state of the VM stack 1444
and the byte code being processed does not have to involve
a table look up. The checks can be performed by set of
simple comparisons as shown in Appendix I which is hereby
incorporated by reference. This embodiment is preferable
when ROM space is at a premium, since it eliminates a
256-byte table. However adding new byte codes to the set of
supported byte codes has to be carefully thought out since
the new byte codes have to fit in the implicit numbering
scheme of the supported byte codes.

In another embodiment, the Card JVM 16 chooses not to
perform any security checks in favor of Card JVM 16
execution speed. This is illustrated in the flowchart in FIG.
18. The flow chart in FIG. 18 is the same as that of FIG. 16
with the security checks removed. This option is not desir-
able from the point of view of security, unless it can be
guaranteed that the byte codes are secure.

The Card JVM 16 may enforce other security checks as
well. If the byte code may reference a local variable, the
Card JVM 16 checks if this reference is valid, throwing an
error if it is not. If the reference is valid, the Card JVM 16
stores the type of the local variable for future checking. The
VM stack 1444 pointer is checked to see if it is still in a valid
range. If not an exception is thrown. The byte code number
is checked. If it is not supported, an exception is thrown.

Finally, the byte code itself is dispatched 165d. The byte
codes translated by the Card JVM 16 are listed in Appendix
C. The semantics of the byte codes are described in the
aforementioned Java Virtual Machine Specification with
regard to the state of the VM stack 144a before and after the
dispatch of the byte code. Note also that some byte codes
(the byte codes, INVOKESTATIC, INVOKESPECIAL,
INVOKENONVIRTUAL and INVOKEVIRTUAL) may
cause reentry into the Card JVM 16, requiring processing to
begin at the entry of the subroutine 161. FIG. 17 shows the
flowchart of the byte code execution routine. The routine is
given a byte code 171 to execute. The Card JVM 16 executes
172 the instructions required for the byte code. If in the
course of executing the Card JVM 16 encounters a resource
limitation 173, it returns an error 156. This error is returned
to the terminal 16 by the Card JVM 16. If the byte code
executes successfully, it returns a success 175.

After execution, the type of the result is used to set the
VM stack 144a state correctly 165e, properly flagging the
data types on the VM stack 144a. The byte code information
gathered previously 165b from the byte code info table is
used to set the state of the VM stack 1444 in accordance with
the byte code that just executed.

In other embodiments, setting the output state of the VM
stack 144a with respect to the byte code executed is sim-
plified if the byte code is renumbered. This is shown in
Appendix I which is hereby incorporated by reference.

In yet another embodiment, the Card JVM 16 may bypass
setting the output state of the VM stack 144a in favor of
Card JVM 16 execution speed. This option is not desirable
from the point of view of security, unless it can be guaran-
teed that the byte codes are secure.

After the byte code has been executed, the byte code is
retired 165f. This involves popping arguments off the VM
stack 144a. Once byte code processing is completed, the
loop 164 is repeated for the next byte code for the method.

Once the dispatch loop 164 terminates, the VM stack
144a is emptied 166. This prevents any object references
filtering down to other Card JVM 16 invocations and
breaking the Card JVM’s 16 security. Termination 167 of the
byte code dispatch loop 164 indicates that the Card JVM 16
has completed executing the requested method.

10

15

20

25

30

35

40

45

50

55

60

65

16

To isolate data and applications in the integrated circuit
card 10 from each other, the integrated circuit card 10 relies
on the firewall mechanism 149 provided by the Card JVM
16. Because the Card JVM implements the standard pass 3
and pass 4 verifier checks, it detects any attempt by an
application to reference the data or code space used by
another application, and flag a security error 156. For
example, conventional low level applications can cast non-
reference data types into references, thereby enabling access
to unauthorized memory space, and violating security. With
this invention, such an attempt by a card application 126z to
use a non-reference data type as a reference will trigger a
security violation 156. In conventional Java, this protected
application environment is referred to as the sandbox
application-interpretation environment.

However, these firewall facilities do not work indepen-
dently. In fact, the facilities are overlapping and mutually
reinforcing with conventional access control lists and
encryption mechanisms shown in the following table:

Acess

Control Virtual

Lists Machine Encryption
Data access access only data to
Protection control to own another

before namespace program

operation encrypted
Program access execution data
Protection control only on encrypted in

before correct program’s

execution types namespace
Communication access channel only mutually
Protection control on controls authenticated

channels in own parties can

namespace communicate

Taken together, these facilities isolate both data and
applications on the integrated circuit card 10 and ensure that
each card application 126 can access only the authorized
resources of the integrated circuit card 10.

Referring to FIG. 19, card applications 126x, 126y, 126z
can be endowed with specific privileges when the card
applications 126 execute. These privileges determine, for
example, which data files the card applications 126 can
access and what operations the card applications 126 can
perform on the file system 147. The privileges granted to the
card applications 126 are normally set at the time that a
particular card application 126z is started by the user,
typically from the terminal 14.

The integrated circuit card 10 uses cryptographic identi-
fication verification methods to associate an identity 190
(e.g., identities 1904, 190b and 190c) and hence, a set of
privileges to the execution of the card application 126. The
association of the specific identity 190c¢ to the card appli-
cation 126z is made when the card application 126z begins
execution, thus creating a specific running application 200,
as shown in FIG. 20. The identity 190 is a unique legible text
string reliably associated with an identity token. The identity
token (e.g., a personal identification number (PIN) or a RSA
private key) is an encryption key.

Referring to FIG. 20, in order to run a specific card
application 126z, the identity 190c of the card application
126z must be authenticated. The identity 190c¢ is authenti-
cated by demonstrating knowledge of the identity token
associated with the identity 190c. Therefore, in order to run
the card application 126z, an agent (e.g., a card holder or

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 34 of 45

US 6,308,317 B1

17

another application wishing to run the application) must
show that it possesses or knows the application’s identity-
defining encryption key.

One way to demonstrate possession of an encryption key
is simply to expose the key itself. PIN verification is an
example of this form of authentication. Another way to
demonstrate the possession of an encryption key without
actually exposing the key itself is to show the ability to
encrypt or decrypt plain text with the key.

Thus, a specific running application 200 on the integrated
circuit card 10 includes a card application 126z plus an
authenticated identity 190c. No card application 126 can be
run without both of these elements being in place. The card
application 126z defines data processing operations to be
performed, and the authenticated identity 190c determines
on what computational objects those operations may be
performed. For example, a specific application 126z can
only access identity C’s files 202 in the file system 147
associated with the specific identity 190c, and the specific
card application 126z cannot access other files 204 that are
associated with identities other than the specific identity
190c.

The integrated circuit card 10 may take additional steps to
ensure application and data isolation. The integrated circuit
card 10 furnishes three software features sets: authenticated-
identity access control lists; a Java-based virtual machine;
and one-time session encryption keys to protect data files,
application execution, and communication channels, respec-
tively. Collectively, for one embodiment, these features sets
provide the application data firewalls 149 for one embodi-
ment. The following discusses each software feature set and
then shows how the three sets work together to insure
application and data isolation on the integrated circuit card
10.

An access control list (ACL) is associated with every
computational object (e.g., a data file or a communication
channel) on the integrated circuit card 10 that is be
protected, i.e., to which access is to be controlled. An entry
on an ACL (for a particular computational object) is in a data
format referred to as an e-tuple:

type:identity:permissions
The type field indicates the type of the following identity (in
the identity field), e.g., a user (e.g., “John Smith™), or a
group. The permissions field indicates a list of operations
(e.g., read, append and update) that can be performed by the
identity on the computational object.

As an example, for a data file that has the ACL entry:

USER:AcmeAirlines:RAU,
any application whose identity is “AcmeAirlines” can read
(“R”), append (“A”) and update (“U”) the data file. In
addition, the ACL may be used selectively to permit the
creation and deletion of data files. Furthermore, the ACL
may be used selectively to permit execution of an applica-
tion.

Whenever a computational object is accessed by a run-
ning application 200, the access is intercepted by the Card
JVM 16 and passed to the card operating system 122, which
determines if there is an ACL associated with the object. If
there is an associated ACL, then the identity 190c associated
with the running application 200 is matched on the ACL. If
the identity is not found or if the identity is not permitted for
the type of access that is being requested, then the access is
denied. Otherwise, the access is allowed to proceed.

Referring to FIG. 13, to prevent the potential problems
due to the single data path between the integrated circuit
card 10 and the terminal 14, communication channel isola-

10

15

20

25

30

35

40

45

50

55

60

65

18

tion is accomplished by including in the identity authenti-
cation process the exchange of a one-time session key 209
between the a card application 126z and the terminal appli-
cation 136. The key 209 is then used to encrypt subsequent
traffic between the authenticating terminal application 136
and the authenticated card application 126z. Given the
one-time session key 209, a rogue terminal application can
neither “listen in” on an authenticated communication
between the terminal 14 and the integrated circuit card 10,
nor can the rogue terminal application “spoof” the card
application into performing unauthorized operations on its
behalf.

Encryption and decryption of card/terminal traffic can be
handled either by the card operating system 122 or by the
card application itself 126z. In the former case, the commu-
nication with the terminal 14 is being encrypted transpar-
ently to the application, and message traffic arrives
decrypted in the data space of the application. In the latter
case, the card application 126z elects to perform encryption
and decryption to provide an extra layer of security since the
application could encrypt data as soon as it was created and
would decrypt data only when it was about to be used.
Otherwise, the data would remain encrypted with the session
key 209.

Thus, the application firewall includes three mutually
reinforcing software sets. Data files are protected by
authenticated-identity access control lists. Application
execution spaces are protected by the Card JVM 16. Com-
munication channels are protected with one-time session
encryption keys 209.

In other embodiments, the above-described techniques are
used with a microcontroller (such as the processor 12) may
control devices (e.g., part of an automobile engine) other
than an integrated circuit card. In these applications, the
microcontroller provides a small platform (i.e., a central
processing unit, and a memory, both of which are located on
a semiconductor substrate) for storing and executing high
level programming languages. Most existing devices and
new designs that utilize a microcontroller could use this
invention to provide the ability to program the microcon-
troller using a high level language, and application of this
invention to such devices is specifically included.

The term application includes any program, such as Java
applications, Java applets, Java aglets, Java servlets, Java
commlets, Java components, and other non-Java programs
that can result in class files as described below.

Class files may have a source other than Java program
files. Several programming languages other than Java also
have compilers or assemblers for generating class files from
their respective source files. For example, the programming
language Eiffel can be used to generate class files using
Pirmin Kalberer’s “J-Eiffel”, an Eiffel compiler with JVM
byte code generation (web site: http:/www.spin.ch/
~kalberer/jive/index.htm). An Ada 95 to Java byte code
translator is described in the following reference
(incorporated herein by reference): Taft, S. Tucker, “Pro-
gramming the Internet in Ada 957, proceedings of Ada
Europe *96, 1996. Jasmin is a Java byte code assembler that
can be used to generate class files, as described in the
following reference (incorporated herein by reference):
Meyer, Jon and Troy Downing, “Java Virtual Machine”,
O’Reilly, 1997. Regardless of the source of the class files,
the above description applies to languages other than Java to
generate codes to be interpreted.

FIG. 21 shows an integrated circuit card, or smart card,
which includes a microcontroller 210 that is mounted to a
plastic card 212. The plastic card 212 has approximately the

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 35 of 45

US 6,308,317 B1

19

same form factor as a typical credit card. The communicator
124 can use a contact pad 214 to establish a communication
channel, or the communicator 12a can use a wireless com-
munication system.

In other embodiments, a microcontroller 210 is mounted
into a mobile or fixed telephone 220, effectively adding
smart card capabilities to the telephone, as shown in FIG. 22.
In these embodiments, the microcontroller 210 is mounted
on a module (such as a Subscriber Identity Module (SIM)),
for insertion and removal from the telephone 220.

In other embodiments, a microcontroller 210 is added to
a key ring 230 as shown in FIG. 23. This can be used to
secure access to an automobile that is equipped to recognize
the identity associated with the microcontroller 210 on the
key ring 230.

Jewelry such as a watch or ring 240 can also house a
microcontroller 210 in an ergonomic manner, as shown in
FIG. 24. Such embodiments typically use a wireless com-
munication system for establishing a communication
channel, and are a convenient way to implement access
control with a minimum of hassle to the user.

FIG. 25 illustrates a microcontroller 210 mounted in an
electrical subsystem 252 of an automobile 254. In this
embodiment, the microcontroller is used for a variety of
purposes, such as to controlling access to the automobile,
(e.g. checking identity or sobriety before enabling the igni-
tion system of the automobile), paying tolls via wireless
communication, or interfacing with a global positioning
system (GPS) to track the location of the automobile, to
name a few.

While specific embodiments of the present invention have
been described, various modifications and substitutions will
become apparent to one skilled in the art by this disclosure.
Such modifications and substitutions are within the scope of
the present invention, and are intended to be covered by the
appended claims.

What is claimed is:

1. An integrated circuit card for use with a terminal,
comprising:

a communicator configured to communicate with the

terminal;

a memory storing:

an application derived from a program written in a high

level programming language format wherein the

application is derived from a program written in a

high level programming language format by first

compiling the program into a compiled form and

then converting the compiled form into a converted

form, the converting step including at least one step

selected from a group consisting of

recording all jumps and their destinations in the
original byte codes;

converting specific byte codes into equivalent
generic byte codes or vice-versa;

modifying byte code operands from references using
identifying strings to references using unique
identifiers; and

renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for
interpretation; and

an interpreter operable to interpret such an application

derived from a program written in a high level

programming language format; and

a processor coupled to the memory, the processor con-

figured to use the interpreter to interpret the application
for execution and to use the communicator to commu-
nicate with the terminal.

10

15

20

25

30

35

40

45

50

55

60

65

20

2. The integrated circuit card of claim 1, wherein the high
level programming language format comprises a class file
format.

3. The integrated circuit card of claim 1 wherein the
processor comprises a microcontroller.

4. The integrated circuit card of claim 1 wherein at least
a portion of the memory is located in the processor.

5. The integrated circuit card of claim 1 wherein the high
level programming language format comprises a Java pro-
gramming language format.

6. The integrated circuit card of claim 1, wherein

the application has been processed from a second appli-

cation having a plurality of program elements, at least
one being a string of characters, and

wherein in the first application the string of characters is

replaced with an identifier.

7. The integrated circuit card of claim 6, wherein the
identifier comprises an integer.

8. The integrated circuit card of claim 1 wherein the
processor is further configured to:

receive a request from a requester to access an element of

the card;

after receipt of the request, interact with the requester to

authenticate an identity of the requester; and

based on the identity, selectively grant access to the

element.

9. The integrated circuit card of claim 8, wherein the
requester comprises the processor.

10. The integrated circuit card of claim 8, wherein the
requester comprises the terminal.

11. The integrated circuit card of claim 8, wherein

the element comprises the application stored in the

memory, and

once access is allowed, the requester is configured to use

the application.

12. The integrated circuit card of claim 8, wherein

the element comprises another application stored in the

memory.

13. The integrated circuit card of claim 8, wherein the
element includes data stored in the memory.

14. The integrated circuit card of claim 8 wherein the
element comprises the communicator.

15. The integrated circuit card of claim 8, wherein the
memory also stores an access control list for the element, the
access control list furnishing an indication of types of access
to be granted to the identity, the processor further configured
to:

based on the access control list, selectively grant specific

types of access to the requester.

16. The integrated circuit card of claim 15 wherein the
types of access include reading data.

17. The integrated circuit card of claim 15 wherein the
types of access include writing data.

18. The integrated circuit card of claim 15 wherein the
types of access include appending data.

19. The integrated circuit card of claim 15 wherein the
types of access include creating data.

20. The integrated circuit card of claim 15 wherein the
types of access include deleting data.

21. The integrated circuit card of claim 15 wherein the
types of access include executing an application.

22. The integrated circuit card of claim 1, wherein the
application is one of a plurality of applications stored in the
memory, the processor is further configured to:

receive a request from a requester to access one of the

plurality of applications;

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 36 of 45

US 6,308,317 B1

21

after receipt of the request, determine whether said one of
the plurality of applications complies with a predeter-
mined set of rules; and

based on the determination, selectively grant access to the

requester to said one of the plurality of applications.

23. The integrated circuit card of claim 22, wherein the
predetermined rules provide a guide for determining
whether said one of the plurality of applications accesses a
predetermined region of the memory.

24. The integrated circuit card of claim 22, wherein the
processor is further configured to:

authenticate an identity of the requester; and

grant access to said one of the plurality of applications

based on the identity.

25. The integrated circuit card of claim 1, wherein the
processor is further configured to:

interact with the terminal via the communicator to authen-

ticate an identity; and

determine if the identity has been authenticated; and

based on the determination, selectively allow communi-

cation between the terminal and the integrated circuit
card.

26. The integrated circuit card of claim 25, wherein the
communicator and the terminal communicate via commu-
nication channels, the processor further configured to assign
one of the communication channels to the identity when the
processor allows the communication between the terminal
and the integrated circuit card.

27. The integrated circuit card of claim 26, wherein the
processor is further configured to:

assign a session key to said one of the communication

channels, and

use the session key when the processor and the terminal

communicate via said one of the communication chan-
nels.

28. The integrated circuit card of claim 1, wherein the
terminal has a card reader and the communicator comprises
a contact for communicating with the card reader.

29. The integrated circuit card of claim 1, wherein the
terminal has a wireless communication device and the
communicator a wireless transceiver for communicating
with the wireless communication device.

30. The integrated circuit card of claim 1, wherein the
terminal has a wireless communication device and the
communicator comprises a wireless transmitter for commu-
nicating with the wireless communication device.

31. A method for use with an integrated circuit card and
a terminal, comprising:

storing an interpreter operable to interpret programs

derived from programs written in a high level program-
ming language and an application derived from a
program written in a high level programming language
format in a memory of the integrated circuit card
wherein the application is derived from a program
written in a high level programming language format
by first compiling the program into a compiled form
and then converting the compiled form into a converted
form, the converting step including at least one step
selected from a group consisting of
recording all jumps and their destinations in the origi-
nal byte codes;
converting specific byte codes into equivalent generic
byte codes or vice-versa;
modifying byte code operands from references using
identifying strings to references using unique iden-
tifiers; and

w

10

15

20

25

30

35

40

45

50

55

60

65

22

renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for inter-
pretation; and
using a processor of the integrated circuit card to use the
interpreter to interpret the application for execution;
and

using a communicator of the card when communicating

between the processor and the terminal.

32. The method of claim 31, wherein the high level
programming language format comprises a class file format.

33. The method of claim 31, wherein the processor
comprises a microcontroller.

34. The method of claim 31, wherein at least a portion of
the memory is located in the processor.

35. The method of claim 31, wherein the high level
programming language format comprises a Java program-
ming language format.

36. The method of claim 31, wherein

the application has been processed from a second appli-
cation having a plurality of program elements, at least
one being a string of characters, further comprising:
replacing the string of characters in the first application
with an identifier.

37. The method of claim 36, wherein the identifier
includes an integer.

38. The method of claim 31, further comprising:

receiving a request from a requester to access an element

of the card;

after receipt of the request, interacting with the requester

to authenticate an identity of the requester; and
based on the identity, selectively granting access to the
element.

39. The method of claim 38, wherein the requester com-
prises the processor.

40. The method of claim 38, wherein the requester com-
prises the terminal.

41. The method of claim 38, wherein the element com-
prises the application stored in the memory, further com-
prising:

once access is allowed, using the application with the

requester.

42. The method of claim 38, wherein the element com-
prises another application stored in the memory.

43. The method of claim 38, wherein the element includes
data stored in the memory.

44. The method of claim 38, wherein the element com-
prises the communicator.

45. The method of claim 38, wherein the memory also
stores an access control list for the element, the access
control list furnishing an indication of types of access to be
granted to the identity, further comprising:

based on the access control list, using the processor to

selectively grant specific types of access to the
requester.

46. The method of claim 45, wherein the types of access
include reading data.

47. The method of claim 45, wherein the types of access
include writing data.

48. The method of claim 45, wherein the types of access
include appending data.

49. The method of claim 45, wherein the types of access
include creating data.

50. The method of claim 45, wherein the types of access
include deleting data.

51. The method of claim 45, wherein the types of access
including executing an application.

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 37 of 45

US 6,308,317 B1

23

52. The method of claim 31, wherein the application is
one of a plurality of applications stored in the memory,
further comprising:

receiving a request from a requester to access one of the

applications stored in the memory;

upon receipt of the request, determining whether said one

of the plurality of applications complies with a prede-

termined set of rules; and

based on the determining, selectively granting access to
the said one of the plurality of applications.

53. The method of claim 52, wherein the predetermined
rules provide a guide for determining whether said one of the
plurality of applications accesses a predetermined region of
the memory.

54. The method of claim 52, further comprising:

authenticating an indentity of the requester; and

based on the indentity, granting access to said one of the

plurality of applications.

55. The method of claim 31, further comprising:

communicating with the terminal to authenticate an iden-

tity;

determining if the identity has been authenticated; and

based on the determining, selectively allowing commu-

nication between the terminal and the integrated circuit
card.

56. The method of claim 55, further comprising:

communicating between the terminal and the processor

via communication channels; and

assigning one of the communication channels to the

identity when the allowing allows communication

between the card reader and the integrated circuit card.

57. The method of claim 56, further comprising:

assigning a session Key to said one of the communication

channels; and

using the session key when the processor and the terminal

communicate via said one of the communication chan-

nels.

58. A microcontroller comprising:

a memory storing:

a derivative application derived from an application
having a class file format wherein the application is
derived from an application having a class file format
by first compiling the application having a class file
format into a compiled form and then converting the
compiled form into a converted form, the converting
step including at least one step selected from a group
consisting of

recording all jumps and their destinations in the origi-
nal byte codes;

converting specific byte codes into equivalent generic
byte codes or vice-versa;

modifying byte code operands from references using
identifying strings to references using unique iden-
tifiers; and

renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for
interpretation, and

an interpreter configured to interpret applications
derived from applications having a class file format;
and

a processor coupled to the memory, the processor con-

figured to use the interpreter to interpret the derivative

application for execution.

59. The microcontroller of claim 58, further comprising:

a communicator configured to communicate with a ter-

minal.

10

20

25

30

35

40

45

55

60

65

24

60. The microcontroller of claim 59, wherein the terminal
has a card reader and the communicator comprises a contact
for communicating with the card reader.

61. The microcontroller of claim 59, wherein the terminal
has a wireless communicator and a wireless transceiver for
communicating with the wireless communication device.

62. The microcontroller of claim 59, wherein the terminal
has a wireless communication device and the communicator
comprises a wireless transmitter for communicating with the
wireless communication device.

63. The microcontroller of claim 58, wherein the class file
format comprises a Java class file format.

64. An integrated circuit card for use with a terminal,
comprising:

a communicator configured to communicate with the

terminal,

a memory storing:
applications, each application derived from applica-
tions having a high level programming language
format, and
an interpreter operable to interpret applications derived

from applications having a high level programming

language format wherein the application is derived

from a program written in a high level programming

language format by first compiling the program into

a compiled form and then converting the compiled

form into a converted form, the converting step

including at least one step selected from a group

consisting of

recording all jumps and their destinations in the
original byte codes;

converting specific byte codes into equivalent
generic byte codes or vice-versa;

modifying byte code operands from references using
identifying strings to references using unique
identifiers; and

renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for
interpretation; and

a processor coupled to the memory, the processor con-
figured to:
a.) use the interpreter to interpret the applications for
execution,
b.) use the interpreter to create a firewall to isolate the
applications from each other, and
¢.) use the communicator to communicate with the
terminal.
65. A microcontroller having a set of resource constraints
and comprising:
a memory, and

an interpreter loaded in memory and operable within the
set of resource constraints, the microcontroller having:
at least one application loaded in the memory to be
interpreted by the interpreter, wherein the at least one
application is generated by a programming environ-
ment comprising:

a) a compiler for compiling application source pro-
grams written in high level language source code
form into a compiled form, and

b) a converter for post processing the compiled form
into a minimized form suitable for interpretation
within the set of resource constraints by the
interpreter, wherein the converter comprises means
for translating from the byte codes in the compiled
form to byte codes in a format suitable for interpre-
tation by the interpreter by:

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 38 of 45

US 6,308,317 B1

25

a) using at least one step in a process including the
steps:

a.1) recording all jumps and their destinations in
the original byte codes;

a.2) converting specific byte codes into equiva-
lent generic byte codes or vice-versa;

a.3) modifying byte code operands from refer-
ences using identifying strings to references
using unique identifiers; and

a.4) renumbering byte codes in the compiled
form to equivalent byte codes in the format
suitable for interpretation; and

b) relinking jumps for which destination address is

effected by conversion step a.1, a.2, a.3, or a.4.

66. The microcontroller of claim 65, wherein the com-
piled form includes attributes, and the converter comprises
a means for including attributes required by the interpreter
while not including the attributes not required by the inter-
preter.

67. The microcontroller of claim 65 wherein the compiled
form is in a standard Java class file format and the converter
accepts as input the compiled form in the standard Java class
file format and produces output in a form suitable for
interpretation by the interpreter.

68. The microcontroller of claim 65 wherein the compiled
form includes associating an identifying string for objects,
classes, fields, or methods, and the converter comprises a
means for mapping such strings to unique identifiers.

69. The microcontroller of claim 68 wherein each unique
identifier is an integer.

70. The microcontroller of claim 68 wherein the mapping
of strings to unique identifiers is stored in a string to
identifier map file.

71. The microcontroller of claim 65 where in the high
level language supports a first set of features and a first set
of data types and the interpreter supports a subset of the first
set of features and a subset of the first set of data types, and
wherein the converter verifies that the compiled form only
contains features in the subset of the first set of features and
only contains data types in the subset of the first set of data
types.

72. The microcontroller of claim 65 wherein the applica-
tion program is compiled into a compiled form for which
resources required to execute or interpret the compiled form
exceed those available on the microcontroller.

73. The microcontroller of claim 65 wherein the compiled
form is designed for portability on different computer plat-
forms.

74. The microcontroller of claim 65 wherein the inter-
preter is further configured to determine, during an inter-
pretation of an application, whether the application meets a
security criteria selected from a set of rules containing at
least one rule selected from the set:

not allowing the application access to unauthorized por-

tions of memory,

not allowing the application access to unauthorized

microcontroller resources,

wherein the application is composed of byte codes and

checking a plurality of byte codes at least once prior to
execution to verify that execution of the byte codes
does not violate a security constraint.

75. The microcontroller of claim 65 wherein at least one
application program is generated by a process including the
steps of:

prior to loading the application verifying that the appli-

cation does not violate any security constraints; and
loading the application in a secure manner.

w

25

30

35

45

50

55

60

65

26

76. The microcontroller of claim 75 wherein the step of
loading in a secure manner comprises the step of:

verifying that the loading identity has permission to load
applications onto the microcontroller.
77. The microcontroller of claim 75 wherein the step of
loading in a secure manner comprises the step of:

encrypting the application to be loaded using a loading

key.

78. A method of programming a microcontroller having a
memory and a processor operating according to a set of
resource constraints, the method comprising the steps of:

inputting an application program in a first programming

language;

compiling the application program in the first program-

ming language into a first intermediate code associated
with the first programming language, wherein the first
intermediate code being interpretable by at least one
first intermediate code virtual machine;

converting the first intermediate code into a second inter-
mediate code, wherein the step of converting com-
prises:
at least one of the steps of:
a) recording all jumps and their destinations in the
original byte codes;
b) converting specific byte codes into equivalent
generic byte codes or vice-versa;
¢) modifying byte code operands from references
using identifying strings to references using
unique identifiers; and
d) renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for
interpretation; and
relinking jumps for which destination address is effected
by conversion step a), b), ¢), or d);
wherein the second intermediate code is interpretable
within the set of resource constraints by at least one
second intermediate code virtual machine; and
loading the second intermediate code into the memory of
the microcontroller.

79. The method of programming a microcontroller of
claim 78 wherein the step of converting further comprises:

associating an identifying string for objects, classes,

fields, or methods; and

mapping such strings to unique identifiers.

80. The method of claim 79 wherein the step of mapping
comprises the step of mapping strings to integers.

81. The method of claim 80 wherein the step of loading
the second intermediate code into the memory of the micro-
controller further comprises checking the second interme-
diate code prior to loading the second intermediate code to
verify that the second intermediate code meets a predefined
integrity check and that loading is performed according to a
security protocol.

82. The method of claim 81 wherein the security protocol
requires that a particular identity must be validated to permit
loading prior to the loading of the second intermediate code.

83. The method of claim 81 further characterized by
providing a decryption key and wherein the security proto-
col requires that the second intermediate code is encrypted
using a loading key corresponding to the decryption key.

84. An integrated circuit card for use with a terminal,
comprising:

a communicator configured to communicate with the

terminal,

a memory storing:

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 39 of 45

US 6,308,317 B1

27

an application derived from a program written in a high

level programming language format wherein the

application is derived from a program written in a

high level programming language format by first

compiling the program into a compiled form and

then converting the compiled form into a converted

form, the converting step including the steps of:

modifying byte code operands from references using
identifying strings to references using unique
identifiers;

recording all jumps and their destinations in the
original byte codes;

converting specific byte codes into equivalent
generic byte codes or vice-versa; and

renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for
interpretation; and

an interpreter operable to interpret such an applica-
tion derived from a program written in a high level
programming language format; and

a processor coupled to the memory, the processor con-
figured to use the interpreter to interpret the application
for execution and to use the communicator to commu-
nicate with the terminal.

85. A method for use with an integrated circuit card and

a terminal, comprising:
storing an interpreter operable to interpret programs
derived from programs written in a high level program-
ming language and an application derived from a
program written in a high level programming language
format in a memory of the integrated circuit card
wherein the application is derived from a program
written in a high level programming language format
by first compiling the program into a compiled form
and then converting the compiled form into a converted
form, the converting step including:
modifying byte code operands from references using
identifying strings to references using unique iden-
tifiers;

recording all jumps and their destinations in the origi-
nal byte codes;

converting specific byte codes into equivalent generic
byte codes or vice-versa; and

renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for inter-
pretation;

using a processor of the integrated circuit card to use the
interpreter to interpret the application for execution;
and

using a communicator of the card when communicating
between the processor and the terminal.

86. An integrated circuit card for use with a terminal,

comprising:

a communicator configured to communicate with the
terminal;

10

15

20

25

30

35

40

45

50

55

28

a memory storing:
applications, each application derived from applica-
tions having a high level programming language
format, and
an interpreter operable to interpret applications
derived from applications having a high level
programming language format wherein the appli-
cation is derived from a program written in a high
level programming language format by first com-
piling the program into a compiled form and then
converting the compiled form into a converted
form, the converting step including the steps of:
modifying byte code operands from references
using identifying strings to references using
unique identifiers;
recording all jumps and their destinations in the
original byte codes;
converting specific byte codes into equivalent
generic byte codes or vice-versa; and
renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for
interpretation; and

a processor coupled to the memory, the processor con-
figured to:
a.) use the interpreter to interpret the applications for
execution,
b.) use the interpreter to create a firewall to isolate the
applications from each other, and
¢.) use the communicator to communicate with the
terminal.
87. A microcontroller comprising:

a memory storing:

a derivative application derived from an application hav-
ing a class file format wherein the application is derived
from an application having a class file format by first
compiling the application having a class file format into
a compiled form and then converting the compiled
form into a converted form, the converting step includ-
ing:
recording all jumps and their destinations in the origi-
nal byte codes;

converting specific byte codes into equivalent generic
byte codes or vice-versa; and

renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for
interpretation, and

an interpreter configured to interpret applications
derived from applications having a class file format;
and

a processor coupled to the memory, the processor con-
figured to use the interpreter to interpret the derivative
application for execution.

#* #* #* #* #*

case 6:10-cv-00561. Document| 1 IEVIANER AR KSGH B RHAER D01

US006308317C1

a2y EX PARTE REEXAMINATION CERTIFICATE (6546th)

United States Patent
Wilkinson et al.

(10) Number: US 6,308,317 C1
45) Certificate Issued: Dec. 2, 2008

(54) USING A HIGH LEVEL PROGRAMMING
LANGUAGE WITH A MICROCONTROLLER

(75) Inventors: Timethy J. Wilkinson, London (GB);
Scott B. Guthery, Belmont, MA (US);
Ksheerabdhi Krishna, Cedar Park, TX
(US); Michael A. Montgomery, Cedar
Park, TX (US)

(73) Assignee: Schlumberger Technologies, Inc.,
Austin, TX (US)

Reexamination Request:
No. 90/008,178, Sep. 29, 2006

Reexamination Certificate for:

Patent No.: 6,308,317
Issued: Oct. 23, 2001
Appl. No.: 08/957,512
Filed: Oct. 24,1997

Related U.S. Application Data
(60) Provisional application No. 60/029,057, filed on Oct. 25,

1996.
(51) Imt.CL

GOGF 9/46 (2006.01)

GOGF 9/445 (2006.01)

GOGF 9/455 (2006.01)

GOGF 9/45 (2006.01)

GO7F 7/10 (2006.01)

HO4L 29/06 (2006.01)
(52) US.CL ... 717/139; 717/141; 717/146
(58) Field of Classification Search 7171139,

71715, 141, 146
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,367,685 A 11/1994 Gosling

5,457,799 A 10/1995 Srivastava
5,469,572 A 11/1995 Taylor
5,590,331 A 12/1996 Lewis et al.
5,668,999 A 9/1997 Gosling
5,915,226 A 6/1999 Martineau
5.923,884 A 7/1999 Peyret et al.

OTHER PUBLICATIONS

“Java Intermediate Bytecodes”, ACM SIGPLAN Workshop,
IR ’95, J. Gosling, 1995 ACM.*

W.M. McKeeman, Peephole Optimization, Communications
of the ACM, vol. 8, No. 7 (Jul. 1965), pp. 443-444.

Leon Presser and John R. White, Linkers and Loaders, Com-
puting Surveys, vol. 4, No. 3 (Sep. 1972), pp. 151.

Jerome H. Saltzer and Michael D. Schroeder, The Protection
of Information in Computer Systems, Communications of
the ACM, vol. 17, No. 7 (Jul. 1974), Glossary, Section II.C.

W.M. Waite, Assembly and Linkage, in EL. Bauer and J.
Eickel, eds., Compiler Construction: An Advanced Course
(2d ed. 1976), pp. 339-342 , Springer—Verlag, Berlin.

W.M. Waite, Optimization, in FL. Bauer and J. Eickel, eds.,
Compiler Construction: An Advanced Course (2d ed. 1976),
pp. 551-600, Springer—Verlag, Berlin.

PM. Lewis II, D.J. Rosenkrantz, R.E. Stearns, Compiler
Design Theory (1976), pp. 559-568, Addison-Wesley,
Reading.

B.W. Kemighan and M.D. Mcllroy, UNIX Programmer’s
Manual, Bell Telephone laboratories, Inc., Murray Hill (7th
ed., 1979), Sections LD(1), MEM(4), and A.OUT(5).

(Continued)
Primary Examiner—Fred Ferris
(57) ABSTRACT

An integrated circuit card is used with a terminal. The inte-
grated circuit card includes a memory that stores an inter-
preter and an application that has a high level programming
language format. A processor of the card is configured to use
the interpreter to interpret the application for execution and
to use a communicator of the card to communicate with the
terminal.

Originat byte codes
60 /81
L PPASS 1: List ail jJumps and their destinations]
Transtate \(” %2
N0/ epecific
byt codes?,
Yes 8
[PASS 2: Convert spedific byte cades into genoric byto codes]

64

[PASS 3: Relink Roferences

N0 / Modity byt
codes?
YES Y.
L Pm4:mummmmcwmmm_j

yaid

3
L PASS 5: Readjuat Jumps]

ﬁ

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 41 of 45

US 6,308,317 C1
Page 2

OTHER PUBLICATIONS

A.S. Tanenbaum et al., Using Peephole Optimization on
Intermediate Code, ACM Transactions on Programming
Languages and Systems, vol. 4, No. 1 (Jan. 1982), pp.
26-35.

Andrew S. Tanenbaum, Structured Computer Organization
(3d ed. 1990), pp. 397-428, Prentice Hall, Englewood Cliffs.
ISO/IEC standard 78164 (1st ed. 1995).

Patrice Peyret, Application—Enabling Card Systems with
Plug-and-Play Applets, 1996 Smart Card Convention,
Quality Marketing, Peterborough, U.K. (Feb. 1996), pp.
51-71.

Tim Lindholm and Frank Yellin, The Java Virtual Machine
Specification, (1st ed., Sep. 1996), Chapters 2-16, 9, Add-
ison—Wesley, Reading.

Leon Presser and John R. White, Linkers and Loaders, Com-
puting Surveys, vol. 4, No. 3 (Sep. 1972), p. 151.

W.M. Waite, Assembly and Linkage, In FL. Bauer and J.
Eickel, eds., Compiler Construction: An Advanced Course
(2d ed. 1976), pp. 339-342.

PM. Lewis II, D.J. Rosenkrantz, R.E. Stearns, Compiler
Design Theory (1976), pp. 559-568.

B.W. Kemighan and M.D. Mcllroy, UNIX Programmer’s
Manual, Bell Telephone Laboratories, Inc., Murray Hill (7th
ed., 1979), Section LD(1), MEM(4), and A.OUT(5).

Andrew S. Tanenbaum et al., Using Peephole Optimization
on Intermediate Code, ACM Transactions on Programming
Languages and Systems, vol. 4, No. 1 (Jan. 1982), pp.
26-35.

Andrew S. Tanenbaum, Structured Computer Organization
(3d ed. 1990), pp. 397—428.

Patrice Peyret, Application~Enabling Card Systems with
Plug-and-Play Applets, 1996 Smart Card Convention,
Peterborough, UK (Feb. 1996), pp. 51-71.

Tim Lindholm and Frank Yellin, The Java Virtual Machine
Specification, Addison—-Wesley, (1st ed., Sep. 1996), Chap-
ters 1,2,3 and 9.

* cited by examiner

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 42 of 45

US 6,308,317 C1

1
EX PARTE
REEXAMINATION CERTIFICATE
ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the
patent, but has been deleted and is no longer a part of the
patent; matter printed in italics indicates additions made
to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT:

Claims 1, 31, 58, 64, 65, 78 and 8487 are determined to
be patentable as amended.

Claims 2-30, 32-57, 5963, 66-77 and 79-83, dependent
on an amended claim, are determined to be patentable.

New claims 88-94 are added and determined to be patent-
able.

1. An integrated circuit card for use with a terminal, com-
prising:
a communicator configured to communicate with the ter-
minal;
a memory storing:
an applicaton derived from a program written in a high
level programming language format wherein the
application is derived from a program written in a
high level programming language format by first
compiling the program into a compiled form and
then converting the compiled form into a converted
form, the converting step [including at least one step
selected from a group consisting of] comprising:
recording all jumps and their destinations in the
original byte codes;
performing a conversion operation selected from the
group:
converting specific byte codes into equivalent
generic byte codes [or vice-versa];
modifying byte code operands from references using
identifying strings to references using unique
identifiers; and
renumbering byte codes in [a compiled format} the
compiled form to equivalent byte codes in [a for-
mat suitable for interpretation] an instruction set
supported by an interpreter on the integrated cir-
cuit card, and
relinking jumps for which the destination address is
affected by the conversion operation; and
an interpreter operable to interpret such an application
derived from a program written in a high level pro-
gramming language format; and
a processor coupled to the memory, the processor config-
ured to use the interpreter to interpret the application
for execution and to use the communicator to commu-
nicate with the terminal.
31. A method for use with an integrated circuit card and a
terminal comprising:
storing an interpreter operable to interpret programs
derived from programs written in a high level program-
ming language and an application derived from a pro-
gram written in a high level programming language for-

20

25

30

35

45

50

55

65

2

mat in a memory of the integrated circuit card wherein
the application is derived from a program written in a
high level programming language format by first com-
piling the program into a compiled form and then con-
verting the compiled form into a converted form, the
converting step [including at least one step selected
from a group consisting of] comprising:

recording all jumps and their destinations in the origi-
nal byte codes;

performing a conversion operation selected from the
group:
converting specific byte codes into equivalent

generic byte codes for vice-versa];

modifying byte code operands from references using
identifying strings to references using unique identi-
fiers; and

renumbering byte codes in [a compiled format] the
compiled form to equivalent byte codes in [a format
suitable for interpretation] an instruction set sup-
ported by an interpreler on the integrated circuit
card;, and

relinking jumps for which the destination address is
affected by the conversion operation; and

using a processor of the integrated circuit card to use the
interpreter to interpret the application for execution;
and

using a communicator of the card when communicating
between the processor and the terminal.

§8. A microcontroller comprising:

a memory storing:

a derivative application derived from an application
having a class file format wherein the application is
derived from an application having a class file format
by first compiling the application having a class file
format into a compiled form and then converting the
compiled form into a converted form, the converting
step [including at least one step selcctcd from a
group consisting of] comprising:

recording all jumps and their destinations in the origi-
nal byte codes;

performing a conversion operation selected from the
group:

converting specific byte codes into equivalent generic
byte codes [or vice-versa];

modifying byte code operands from references using
identifying strings to references using unique identi-
fiers; and

renumbering byte codes in [a compiled format] the
compiled form to equivalent byte codes in [a format
suitable for interpretation] an instruction set sup-
ported by an interpreter on the integrated circuit
card, and

relinking jumps for which the destination address is
affected by the conversion operation; and

an interpreter configured to interpret applications
derived from applications having a class file format;
and

a processor coupled to the memory, the processor config-
ured to use the interpreter to interpret the derivative
application for execution.

64. An integrated circuit card for use with a terminal,

comprising:

a communicator configured to communicate with the ter-
minal;

a memory storing:

applications, each application derived from applica-
tions having a high level programming language
format, and

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 43 of 45

US 6,308,317 C1

3

an interpreter operable to interpret applications derived
from applications having a high level programming
language format wherein [the] each application is
derived from a program written in a high level pro-
gramming language format by first compiling the
program into a compiled form and then converting
the compiled form into a converted form, the con-
verting step [including at least one step selected from
a group consisting of] comprising:
recording all jumps and their destinations in the

original byte codes;

performing a conversion operation selected from the
group:

converting specific byte codes into equivalent
generic byte codes [or vice-versa];

modifying byte code operands from references using
identifying strings to references using unique
identifiers; and

renumbering byte codes in [a compiled format] the
compiled form to equivalent byte codes in [a for-
mat suitable for interpretation] an instruction set
supported by an interpreter on the integrated cir-
cuit card; and

relinking jumps for which the destination address is
affected by the conversion operation; and

a processor coupled to the memory, the processor config-
ured to:

a.) use the interpreter to interpret the applications for
execution,

b.) use the interpreter to create a firewall to isolate the
applications from each other, and

c.) use the communicator to communicate with the ter-
minal.

65. A microcontroller having a set of resource constraints

and comprising:
a memory, and
an interpreter loaded in memory and operable within the
set of resource constraints, the microcontroller having:
at least one application loaded in the memory to be
interpreted by the interpreter, wherein the at least one
application is generated by a programmable environ-
ment comprising:
a) a compiler for compiling application source pro-
grams written in high level language source code
form into a compiled form, and
b) a converter for post processing the compiled form
into a minimized form suitable for interpretation
within the set of resource constraints by the
interpreter, whrein the converter comprises means
for translating from the byte codes in the compiled
form to byte codes in a format suitable for interpreta-
tion by the interpreter by:
[a) using at least one step in a process including the
steps: a] b.1) recording all jumps and their destina-
tions in the original byte codes;
b.2)performing a conversion operation selected from
the group:
[2.2] b.2.1) converting specific byte codes into
equivalent generic byte codes[or vice-versa];
[2.3] 4.2.2) modifying byte code operands from
references using identifying strings to refer-
ences using unique identifiers; and

[2.4] b.2.3.) renumbering byte codes in [the com-
piled format] the compiled form to equivalent
byte codes in [a format suitable for
interpretation]an instruction set supported by
an interpreter on the integrated circuit card,
and

4

b.3) relinking jumps for which the destination
* address is [effected} affected by the-conversion
[step a.1, 2.2, a. 3, or a.4] operation.
78. A method of programming a microcontroller having a
5 memory and a processor operating according to a set of
resource constraints, the method comprising the steps of:
inputting an application program in a first programming
language;
compiling the application program in the first program-
ming language into a first intermediate code associated
with the first programming language, wherein the first
intermediate code being interpretable by at least one
first intermediate code virtual machine;
converting the first intermediate code into a second inter-
mediate code, wherein the step of converting com-
prises:
[at least one of the steps of: a)] recording all jumps and
their destinations in the original byte codes;
performing a conversion operation selected from the
group:

[b)] converting specific byte codes into equivalent
generic byte codes [or vice-versa];

[c)] modifying byte code operands from references
using identifying strings to references using
unique identifiers; and

[d)] renumbering byte codes in [a compiled format]
the compiled form to equivalent byte codes in [a
format suitable for interpretation] an instruction
set supported by an interpreter on the integrated
circuit card, and

relinking jumps for which the destination address is
[effected] affected by the conversion [step a), b), c), or
d)] operation;
wherein the second intermediate code is interpretable
within the set of resource constraints by at least one
second intermediate code virtual machine; and
loading the second intermediate code into the memory of
the microcontroller.
84. An integrated circuit card for use with a terminal,
comprising:
a communicator configured to communicate with the ter-
minal;
a memory storing: :
an application derived from a program written in a high
level programming language format wherein the

application is derived from a program written in a

high level programming language format by first

compiling the program into a compiled form and

then converting the compiled form into a converted

form, the converting step including the steps of:

recording all jumps and their destinations in the
original byte codes;

modifying byte code operands from references using
identifying strings to references using unique
identifiers;

[recording all jumps and their destinations in the
original byte codes;]

converting specific byte codes into equivalent
generic byte codes [or vice-versa]; [and]

renumbering byte codes in [a compiled format] the
compiled form o equivalent byte codes in [a format
suitable for interpretation] an instruction set sup-
ported by an interpreter on the integrated circuit
card; and

adjusting jump destinations that are affected by at
least one of the steps of modifying byte code

10

15

20

30

35

45

50

55

65

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 44 of 45

US 6,308,317 C1

5

operands, converting specific byte codes into
equivalent generic byte codes, or renumbering
byte codes; and
an interpreter operable to interpret such an applica-
tion derived from a program written in a high level
programming language format; and
a processor coupled to the memory, the processor config-
ured to use the interpreter to interpret the application
for execution and to use the communicator to commu-
nicate with the terminal.
85. A method for use with an integrated circuit card and a
terminal, comprising:
storing an interpreter operable to interpret programs
derived from programs written in a high level program-
ming language and an application derived from a pro-
gram written in a high level programming language for-
mat in a memory of the integrated circuit card wherein
the application is derived from a program written in a
high level programming language format by first com-
piling the program into a compiled form and then con-
verting the compiled form into a converted form, the
converting step including:
recording all jumps and their destinations in the origi-
nal byte codes;
modifying byte code operands from references using
identifying strings to references using unique identi-
fiers;
[recording all jumps and their destinations in the origi-
nal byte codes;]
converting specific byte codes into equivalent generic
byte codes [or vice-versa]; [and]
renumbering byte codes in [a compiled format] the
compiled form to equivalent byte codes in [a format
suitable for interpretation] an instruction set sup-
ported by an interpreter on the integrated circuit
card;, and
adjusting jump destinations that are affected by at least
one of the steps of modifying byte code operands,
converting specific byte codes into equivalent
generic byte codes, or renumbering byte codes; and
using a processor of the integrated circuit card to use the
interpreter to interpret the application for execution;
and
using a communicator of the card when communicating
between the processor and the terminal.
86. An integrated circuit card for use with a terminal,
comprising:
a communicator configured to communicate with the ter-
minal;
a memory storing:
applications, each application derived from applica-
tions having a high level programming language
format, and
an interpreter operable to interpret applications
derived from applications having a high level pro-
gramming language format wherein the applica-
tion is derived from a program written in a high
level programming language format by first com-
piling the program into a compiled form and then
converting the compiled form into a converted
form, the converting step including the steps of:
recording all jumps and their destinations in the
original byte codes;
modifying byte code operands from references
using identifying strings to references using
unique identifiers;

20

25

30

35

45

50

55

60

65

6

[recording all jumps and their destinations in the
original byte codes;]

converting specific byte codes into equivalent
generic byte codes [or vice-versa]; [and]

renumbering byte codes in [a compiled format]
the compiled form to equivalent byte codes in
[a format suitable for interpretation] an
instruction set supported by an interpreter on
the integrated circuit card; and

adjusting jump destinations that are affected by at
least one of the steps of modifying byte code
operands, converting specific byte codes into
equivalent generic byte codes or vice versa,
and renumbering byte codes; and

a processor coupled to the memory, the processor config-
ured to:

a.) use the interpreter to interpret the applications for
execution,

b.) use the interpreter to create a firewall to isolate the
applications from each other, and

c.) use the communicator to communicate with the ter-
minal.
87. A microcontroller comprising;
a memory storing:
a derivative application derived from an application hav-
ing a class file format wherein the application is derived
from an application having a class format by first com-
piling the application having a class file format into a
compiled form and then converting the compiled form
into a converted form, the converting step including:
recording all jumps and their destinations in the origi-
nal byte codes;

converting specific byte codes into equivalent generic
byte codes [or vice-versa]; [and]

renumbering byte codes in [a compiled format] the
compiled form to equivalent byte codes in [a format
suitable for interpretation,] an instruction set sup-
ported by an interpreter on the integrated circuit
card; and

adjusting jump destinations that are affected by at least
one of the steps of converting specific byte codes into
equivalent generic byte codes and renumbering byte
codes; and

an interpreter configured to interpret applications
derived from applications having a class file format;
and
a processor coupled to the memory, the processor config-
ured to use the interpreter to interpret the derivative
application for execution.
88. A method of programming a microcontroller having a
memory and a processor operating according to a set of
resource constraints, the method comprising the steps of:
inputting an application program in a first programming
language;
compiling the application program in the first program-
ming language into a first intermediate code associated
with the first programming language, wherein the first
intermediate code being interpretable by at least one
[irst intermediate code virtual machine;
converting the first intermediate code into a second inter-
mediate code, wherein the step of converting com-
prises:
recording all jumps and their destinations in the origi-
nal byte codes;

modifying byte code operands from references using
identifying strings to references using unique identi-
fiers; and

Case 6:10-cv-00561 Document 1-1 Filed 10/22/10 Page 45 of 45

US 6,308,317 C1

7

renumbering byte codes in the compiled form to
equivalent byte codes in an instruction set sup-
ported by an interpreter on the integrated circuit;
and
relinking jumps for which the destination address is
affected by the conversion operation;
wherein the second intermediate code is interpretable
within the set of resource constraints by at least one
second intermediate code virtual machine; and

loading the second intermediate code into the memory of
the microcontroller.
89. The method of programming a microcontroller of
claim 88 wherein the step of converting further comprises:

associating an identifying string for objects, classes,
fields, or methods; and mapping such strings to unique
identifiers.

90. The method of claim 89 wherein the step of mapping
comprises the step of mapping strings to integers.

91. A method of programming a microcontroller having a
memory and a processor operating according to a set of
resource constraints, the method comprising the steps of:

inputting an application program in a first programming

language;

compiling the application program in the first program-

ming language into a first intermediate code associated
with the first programming language, wherein the first
intermediate code being interpretable by at least one
first intermediate code virtual machine;

converting the first intermediate code into a second inter-
mediate code, wherein the step of converting com-
prises:
recording all jumps and their destinations in the origi-
nal byte codes;
performing a conversion operation comprising;
modifying specific byte codes into equivalent generic
byte codes; and
relinking jumps for which the destination address is
affected by the conversion operation;
wherein the second intermediate code is interpreiable
within the set of resource constraints by at least one
second intermediate code virtual machine; and

loading the second intermediate code into the memory of

the microcontroller.

92. A method of programming a microcontroller having a
memory and a processor operating according to a set of
resource constraints, the method comprising the setps of-

inputting an application program in a first programming

language;

compiling an application program in the first program-

ming language into a first intermediate code associated
with the first programming language, wherein the first
intermediate code being interpretable by at least one
first intermediate code virtual machine;

converting the first intermediate code into a second inter-
mediate code, wherein the step of converting com-
prises:
recording all jumps and their destinations in the origi-
nal byte codes;
performing a conversion operation comprising:
renumbering byte codes in the compiled form to
equivalent byte codes in an instruction set sup-
ported by an interpreter on the integrated circuit
card; and

10

25

30

35

45

50

60

8
relinking jumps for which the destination address is
affected by the conversion operation; -
wherein the second intermediate code is interpretable
within the set of resource constraints by at least one
second intermediate code virtual machine; and
loading the second intermediate code into the memory of
the microcontroller.
93. An integrated circuit card for use with a terminal,
comprising:
a communicator configured to communicate with the ter-
minal;
a memory storing:
an application derived from a program written in a
high level programming language format wherein
the application is derived from a program written in
a high level programming language format by first
compiling the program into a compiled form and
then converting the compiled form into a converted
Jorm, the converting step comprising:
recording all jumps and their destinations in the
original byte codes;
performing a conversion operation including modi-
Jying byte code operands from references using
identifying strings to references using unique
identifiers; and
relinking jumps for which the destination address is
affected by the conversion operation; and
an interpreter operable to interpret such an application
derived from a program written in a high level pro-
gramming language format; and
a processor coupled to the memory, the processor config-
ured to use the interpreter to interpret the application
for execution and to use the communicator to communi-
cate with the terminal.
94. An integrated circuit card for use with a terminal,
comprising:
a communicator configured to communicate with the ter-
minal;
a memory storing:
an application derived from a program written in a
high level programming language format wherein
the application is derived from a program written in
a high level programming language format by first
compiling the program into a compiled form and
then converting the compiled form into a converted
Jorm, the converting step comprising:
recording all jumps and their destinations in the
original byte codes;
performing a conversion operation including:
converting specific byte codes into equivalent
generic byte codes; and
renumbering byte codes in the compiled form to
equivalent byte codes in an instruction set sup-
ported by an interpreter on the integrated cir-
cuit card; and
relinking jumps for which the destination address is
affected by the conversion operation; and
an interpreter operable to interpret such an application
derived from a program written in a high level pro-
gramming language format; and
a processor coupled to the memory, the processor config-
ured to use the interpreter to interpret the application
Jor execution and to use the communicator to communi-
cate with the terminal.

* * * * %

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 1 of 36 enabling INNOVATION

US007117485B2

http://www.patentlens.net/

a2y United States Patent (10) Patent No.: US 7,117,485 B2

Wilkinson et al. 5) Date of Patent: Oct. 3, 2006

(54) USING A HIGH LEVEL PROGRAMMING 5,663,553 A * 9/1997 Aucsmithc...... 235/492

LANGUAGE WITH A MICROCONTROLLER 5,679,945 A * 10/1997 Renner et al. ... 235/492

5748964 A * 5/1998 Gosling 717/126

(75) Inventors: Timothy J. Wilkinson, London (GB); gﬁggéég : : Sﬁggg II\)/Im“tleiu o ‘7‘?;;?25
. 923, eyret et al. ..

IS<cs(;1t:e]3;1lf;lllltihlil;yi;lie;mcoggaergrgjST)fi 6.223.984 B1* 52001 Renner et al. 235/380

) . 6308317 BL* 10/2001 Wilkinson et al. 717/139

(US); Michael A. Montgomery, Cedar

Park, TX (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: Axalto SA, Montrouge (FR) FR 2667 171 9/1990
JP 61-204741 A 9/1986
(*) Notice: Subject‘ to any dlsclalmer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 643 days. Rodley, J., Writing Java Applets, Apr. 15, 1996, Corolis Group, p.
3-19.%
(21) Appl. No.: 10/037,390 Fryer, Microsoft Computer Dictionary, 1997, Microsoft Press, 3™
Ed., p. 498.*

(22) Filed: Oct. 23, 2001 ¢ cited by examiner

(65) Prior Publication Data Primary Examiner—John Chavis
US 2003/0023954 Al Jan. 30. 2003 (74) Attorney, Agent, or Firm—Pehr Jansson
(51) Int. CL (57) ABSTRACT
GO6F 9/45 (2006.01)
(52) US.Cl 7171139 An integrated circuit card is used with a terminal. The

integrated circuit card includes a memory that stores an
interpreter and an application that has a high level program-
ming language format. A processor of the card is configured
to use the interpreter to interpret the application for execu-
(56) References Cited tion and to use a communicator of the card to communicate
with the terminal.

(58) Field of Classification Search 717/139,
717/118; 235/492, 441
See application file for complete search history.

U.S. PATENT DOCUMENTS
5,500,517 A * 3/1996 Cagliostrocc....... 235/486 44 Claims, 23 Drawing Sheets

160
161

ISet VM stack Parameters Set Card JVM program Counter|

162
Check method flag, if native?
163

Handle native method
Place return value on
VM Stack

164
inished interpreting method
NO
165

A branch to be taken?
165a~ | Prepare
for branch

| Retrieve next byte codeftype information |/165b
¥

NO

NO

167

| Chack VM stack state (Pass 3 security checks) l/'165¢
¥

| Execute byte code l/‘1 65d
| Set VM stack state 1/'7556
¥

165f
I Retire the byte code [/—
—

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 2 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 1 of 23 US 7,117,485 B2

Integrated Circuit Card

10 16
N A Card Java Virtual Machine
(Card JVM)

128\ Communicator

A

i

12| Terminal
Communicator

14\

Terminal

FIGURE 1

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10

http://www.patentlens.net/

U.S. Patent

Oct. 3, 2006

Sheet 2 of 23

Java
Application
20b

20

Page 3 of 36

enabling INNOVATION

US 7,117,485 B2

(C.JAVA)

Application
Class Files

JAVA JAVA /22
CODE FOR CODE FOR Java
CLASS A CLASS B Applicati
(AJAVA) (B.JAVA) »{ Application
Development
Environment
JAVA
CODE FOR
CLASS C

FIGURE 2

Va 26
CODE FOR CODE FOR
CLASS A CLASS B Card
(B.CLASS) » Class File
Converter
CODE FOR
CLASS C
(C.CLASS)
Card L z = =
Class File
(contains Card ln’gggitf ‘
Classes Loader Card
A, B, and C)

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 4 of 36

http://www.patentlens.net/

U.S. Patent

Oct. 3, 2006

Application 24
Class Files

24b

COMPILED
CODE FOR

CLASS A
(A.CLASS)

COMPILED
CODE FOR
CLASS B
(B.CLASS)

COMPILED
CODE FOR

CLASS C
(C.CLASS)

Sheet 3 of 23

enabling INNOVATION

US 7,117,485 B2

String To ID

Input
Map

26| Card

Class File
Converter

Card
Class File
(contains

Classes
A, B, and C)

FIGURE 3

String To ID
Output
Map

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 5 of 36 enabling INNOVATION

U.S. Patent Oct. 3, 2006

41;

42

43

441

Application Class Files

Sheet 4 of 23 US 7,117,485 B2

2

~

| Class File Information

Card Class File Vs 27

- 46

Class File Information

i »|_Card Class File Information]

Class Constant Pool -
Contains all the strings
corresponding to Fields
methods and Class
names referred to in the
Java program

Optimized Card Class - 47
Constant Pool where '
each string is replaced
byaniD

_

Class, field, Interface
and Methad Information

Card Class, Card Field, - 48
Card Interface and Card
Method Information

Attribute Information
r—Source File Attribute
+-Constant Value Attribute

Code Attribute

I Card Attribute Information /= 49

. Code Attribute
~ (optionally transiated)

F—Exceptions Attribute
<} ine Number Table Attribute
<+ ocal Vanable Table Attribute

Optional Vendor Attributes

V- 24b,c

45
= ={ E!iminatedl

X 243

FIGURE 4

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 6 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 5 of 23 US 7,117,485 B2

VA 56
More Gather All Constant
Class NO R Pool Entries
Files To i and
Process? Mcodified byte codes

/* 51a ! [57
Select A Ciassfile Generate Card
i /- 51b Class File
and
Compact Constant Pool oo String to ID map
v /- (if required)
Check For Unsupported Features
i / 51d
Discard Unnecessary Parts

Flag Errors

Unsupported and
Features Stop
Found? Conversion

/‘54

Modify The byte codes
3y

FIGURE 5

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 7 of 36

Original byte codes
60

/6 1
PASS 1: List all jumps and their destinations
NO Translate 62
specific
byte codes?
ya 63

PASS 2: Convert specific byte codes into generic byte codes

: /64
PASS 3: Relink References
65
NO " Modify byte
codes?
Va 66

PASS 4: Modify Java byte codes to Card JVM byte codes

»
'

Y

/‘67

PASS 5: Readjust Jumps

68
Modified byte codes

FIGURE 6

enabling INNOVATION

U.S. Patent Oct. 3, 2006 Sheet 6 of 23 US 7,117,485 B2

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 8 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 7 of 23 US 7,117,485 B2
o /72
0:| ILOAD_O 0:| ILOAD
1:| ILOAD_1 | T TTTTee-eell 1: 0
2: | IFNE 1: \\\\\ 2| 1LoaD
3:| BIPUSH Tl 1
4: 5 4:§ IFNE 2:
5| BIPUSH
6 5

FIGURE 7

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 9 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 8 of 23 US 7,117,485 B2

N
¢ o]
\J T
wCO
2|+
)
A
o | ©
o | ©
o | © (o)
LL]
(1
S -
3 9
o Ll
o
=) © T
0
NIE *lEl 8
Ol T N
all = ¥ G
9 0| D Q
- o)
-_)
0
O
V
M
o | ©
o | o
o { ©

http://www.patentlens.net/

enabling INNOVATION

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 10 of 36

http://www.patentlens.net/

US 7,117,485 B2

Sheet 9 of 23

Oct. 3, 2006

U.S. Patent

6 AN9OI4
|00d JUBlsuo?) ajij sse|n plen |00d Juelsuo) ajlj sse|n
VA% 4%
/ - A / .
el J2l al) | beld
€ddd 11004 poyap° ° ° >A>W %_ms pouytdy|° ° °
] gl 14" 1 6 o o ¢6 16 06 68 o o o
(xapul) €1 (xepul) 68
OILVLSIMOANI DILVISIAMOANI
6/ 06/

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 11 of 36

U.S. Patent

/ 100

ALOAD 43

0

ILOAD 21

1

IFNE 154 2:

BIPUSH 16

@ a Hh e Ww

5

Oct. 3, 2006

Sheet 10 of 23

FIGURE 10

US 7,117,485 B2

ya 102

ALOAD 51

0

ILOAD 50

1

IFNE 27 2:

BIPUSH 49

5

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

U.S. Patent

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 12 of 36 enabling INNOVATION

Oct. 3,2006 Sheet 11 of 23 US 7,117,485 B2
/—112 Vs 116
ILOAD ILOAD B
>
8 8
/—114 /—118

_____ O" - = T T (o] o o]
L 0 ___J]
————— O - — — -

5 5

Stack

Word-Based Operand

Byte-Based Operand
Stack

FIGURE 11

http://www.patentlens.net/

enabling INNOVATION

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 13 of 36

http://www.patentlens.net/

US 7,117,485 B2

Sheet 12 of 23

Oct. 3, 2006

U.S. Patent

¢l HNOId

walsAg 8|4 pied

welsAg Bunesado plred

Z / ,
NOILYDIddY cct
Qydvo !
JoJJU0D
) uonnoax3 | lapeon
b puy) pJen
Buipeo
ozt -/ gz /
suoneoiddy
eTA) pIED
\ o
bzh pJen 1naai0 pajeibonu) g

http://www.patentlens.net/

enabling INNOVATION

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 14 of 36

http://www.patentlens.net/

US 7,117,485 B2

Sheet 13 of 23

Oct. 3, 2006

U.S. Patent

[euiua]

leulwa]

Jojesjunwiwio)

€L 3dNoid

plJed 1unaJin pajeibeju)

gz, 1

A4

Y

~

JaALQq

Jojealunwiwion

I

zer/ 1

\d

1aAlQg pied

HUNa.1D pajelbaju)

per /1

uonesijddy

EIEITET]

9€t

~

N

s

60¢

A\ 4

JOJBOIUNWIWIOY) |«

A4

wa)sAg Bunesadp pien

ez

vel \

NN“\

A

A A

2.\

INAF P1ED

9cl

v

NOILLVOI'lddV
advo

suoneolddy
pJed

waysAg oji4 pren

http://www.patentlens.net/

enabling INNOVATION

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 15 of 36

http://www.patentlens.net/

US 7,117,485 B2

Sheet 14 of 23

Oct. 3, 2006

U.S. Patent

I 34N9I4 ealy WeIboid WO 443N wejsAs Buijesedo pied
0F 8rl ! AT pieQ
qor} |/ / PGol \ cpl
uononisuj awl| - uny
807)~ \ 651 R 95\ dooq yoredsig uononAsy| B
NOLLYOIddY a3Xid »
024 ~\[1ou0D UoRNOAXF puy Buipeo]
Zrin, NOdUd3d PIED
easy weiboid WONdIT 4 / NOH P1ED
6717 [XavaEr Sev 0 T1avavol) 44\ WYY PEeD
oubL 7 A Appl ~ Iy
674 | [ENOILVO1ddV T1avavoT H—» SSIqELEA
aipL | woishs
Y erpL 3
6717 | [V NOILVO1ddv T18vavo T s
oLyt 3HOBIS INA S
/| waysAg aji4 8rl
yid) e) | L oels weyshs
e9pl NOddda | -----p-mmmm X deaH VY Nopp

http://www.patentlens.net/

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 16 of 36 enabling INNOVATION

Sheet 15 of 23 US 7,117,485 B2

/120 1262

Execution Control

Card Application

¥

/152

Find Entry point
class ID/method ID

A 4

/‘153

Interpret method

|

Unhandiable
Exception/Error
encountered

YES

Y

154

NO
156
Stop
Card JVM
and send Error
fo terminal
[155

Report Success

FIGURE 15

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 17 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 16 of 23 US 7,117,485 B2

160
Method

il /161
Set VM stack Parameters Set Card JVM program Counter

162

Check method flag, if native? YES

/-163

M

Handle native method
NO Place return value on
VM Stack

’ |

y 164

Finished interpreting method?

166 | A branch to be taken?
Empty VM Stack 165a- | Prepare
167 NO A for branch
< |
Retrieve next byte codeftype information /" 769b
v
Check VM stack state (Pass 3 security checks) | 165¢
v
Execute byte code /~765d
v
Set VM stack state 165e
¥ 165
Retire the byte code /-

L

FIGURE 16

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 18 of 36

enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 17 of 23 US 7,117,485 B2
171
a byte code
| 172

execute bytecode

173
Resource

limitation
encountered?

NO

/175

Report Success

156

Stop
Card JVM
and
Send error to
terminal

FIGURE 17

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 19 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 18 of 23

160
Method

US 7,117,485 B2

Va 161

Set VM stack Parameters Set Card JVM program Counter

l 162

Check method flag, if native?

YES

Va 163

Handle native method
NO Place return value on
VM Stack

|

‘r\&‘
inished interpreting method?

<

166~ | A branch to be taken?
Empty VM Stack > 1 658 Prepare
167 N for branch
<+ |
Retrieve next byte code /1650
v
Execute byte code /- 165d
¥

FIGURE 18

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 20 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 19 of 23 US 7,117,485 B2
o
.9 >
2R =
SEN » TO
2 o
< \
-
N
©
o

1900\

\ »
5 =
TH £ L
© 0> > S m oz
Ug < =
? N 2
| d
S S
N (o))
~ ~
[
o \ >
T® E
© .2 X > C <
OB O
g ©
<
/
©
S
(o>
~

126 N\
126X\
190 \

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 21 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 20 of 23 US 7,117,485 B2
200‘\
Qard /—1262
Run Program C App h;ation
/‘1900
Ide(r:]tlty 'Enter PIN of A

Access Not .~

Allowed .-~
204\ » ‘ 202-\
Other Identity
Files C's Files

FIGURE 20

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 22 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 21 of 23 US 7,117,485 B2

10ﬂ\\

210 214

FIGURE 21

220

FIGURE 22

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 23 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 22 of 23 US 7,117,485 B2

230 l ﬁ; =N

210

FIGURE 23

210

240

FIGURE 24

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 24 of 36 enabling INNOVATION

http://www.patentlens.net/

U.S. Patent Oct. 3, 2006 Sheet 23 of 23 US 7,117,485 B2

i

FIGURE 25

/’254

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 25 of 36

US 7,117,485 B2

1

USING A HIGH LEVEL PROGRAMMING
LANGUAGE WITH A MICROCONTROLLER

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

Under 35 U.S.C. § 119(e), this application claims benefit
of prior U.S. provisional application Ser. No. 60/029,057,
filed Oct. 25, 1996.

BACKGROUND OF THE INVENTION

This invention relates in general to the field of program-
ming, and more particularly to using a high level program-
ming language with a smart card or a microcontroller.

Software applications written in the Java high-level pro-
gramming language have been so designed that an applica-
tion written in Java can be run on many different computer
brands or computer platforms without change. This is
accomplished by the following procedure. When a Java
application is written, it is compiled into “Class” files
containing byte codes that are instructions for a hypothetical
computer called a Java Virtual Machine. An implementation
of this virtual machine is written for each platform that is
supported. When a user wishes to run a particular Java
application on a selected platform, the class files compiled
from the desired application is loaded onto the selected
platform. The Java virtual machine for the selected platform
is run, and interprets the byte codes in the class file, thus
effectively running the Java application.

Java is described in the following references which are
hereby incorporated by reference: (1) Arnold, Ken, and
James Gosling, “The Java Programming Language,” Addi-
son-Wesley, 1996; (2) James Gosling, Bill Joy, and Guy
Steele, “The Java Language Specification,” Sun Microsys-
tems, 1996, (web site: http://java.sun.com/doc/languag-
e_specification); (3) James Gosling and Henry McGilton,
“The Java Language Environment: A White Paper,” Sun
Microsystems, 1995 (web site: http://java.sun.com/doc/lan-
guage_environment/); and (4) Tim Lindholm and Frank
Yellin, “The Java Virtual Machine Specification,” Addison-
Wesley, 1997. These texts among many others describe how
to program using Java.

In order for a Java application to run on a specific
platform, a Java virtual machine implementation must be
written that will run within the constraints of the platform,
and a mechanism must be provided for loading the desired
Java application on the platform, again keeping within the
constraints of this platform.

Conventional platforms that support Java are typically
microprocessor-based computers, with access to relatively
large amounts of memory and hard disk storage space. Such
microprocessor implementations frequently are used in
desktop and personal computers. However, there are no
conventional Java implementations on microcontrollers, as
would typically be used in a smart card.

Microcontrollers differ from microprocessors in many
ways. For example, a microprocessor typically has a central
processing unit that requires certain external components
(e.g., memory, input controls and output controls) to func-
tion properly. A typical microprocessor can access from a
megabyte to a gigabyte of memory, and is capable of
processing 16, 32, or 64 bits of information or more with a

10

15

20

25

40

45

60

65

2

single instruction. In contrast to the microprocessor, a micro-
controller includes a central processing unit, memory and
other functional elements, all on a single semiconductor
substrate, or integrated circuit (e.g., a “chip”). As compared
to the relatively large external memory accessed by the
microprocessor, the typical microcontroller accesses a much
smaller memory. A typical microcontroller can access one to
sixty-four kilobytes of built-in memory, with sixteen kilo-
bytes being very common.

There are generally three different types of memory used:
random access memory (RAM), read only memory (ROM),
and electrically erasable programmable read only memory
(EEPROM). In a microcontroller, the amount of each kind
of memory available is constrained by the amount of space
on the integrated circuit used for each kind of memory.
Typically, RAM takes the most space, and is in shortest
supply. ROM takes the least space, and is abundant.
EEPROM is more abundant than RAM, but less than ROM.

Each kind of memory is suitable for different purposes.
Although ROM is the least expensive, it is suitable only for
data that is unchanging, such as operating system code.
EEPROM is useful for storing data that must be retained
when power is removed, but is extremely slow to write.
RAM can be written and read at high speed, but is expensive
and data in RAM is lost when power is removed. A micro-
processor system typically has relatively little ROM and
EEPROM, and has 1 to 128 megabytes of RAM, since it is
not constrained by what will fit on a single integrated circuit
device, and often has access to an external disk memory
system that serves as a large writable, non-volatile storage
area at a lower cost than EEPROM. However, a microcon-
troller typically has a small RAM of 0.1 to 2.0 K, 2K to 8K
of EEPROM, and 8K —56K of ROM.

Due to the small number of external components required
and their small size, microcontrollers frequently are used in
integrated circuit cards, such as smart cards. Such smart
cards come in a variety of forms, including contact-based
cards, which must be inserted into a reader to be used, and
contactless cards, which need not be inserted. In fact,
microcontrollers with contactless communication are often
embedded into specialized forms, such as watches and rings,
effectively integrating the functionality of a smart card in an
ergonomically attractive manner.

Because of the constrained environment, applications for
smart cards are typically written in a low level programming
language (e.g., assembly language) to conserve memory.

The integrated circuit card is a secure, robust, tamper-
resistant and portable device for storing data. The integrated
circuit card is the most personal of personal computers
because of its small size and because of the hardware and
software data security features unique to the integrated
circuit card.

The primary task of the integrated circuit card and the
microcontroller on the card is to protect the data stored on
the card. Consequently, since its invention in 1974, inte-
grated circuit card technology has been closely guarded on
these same security grounds. The cards were first used by
French banks as debit cards. In this application, before a
financial transaction based on the card is authorized, the card
user must demonstrate knowledge of a 4-digit personal
identification number (PIN) stored in the card in addition to
being in possession of the card. Any information that might
contribute to discovering the PIN number on a lost or stolen
card was blocked from public distribution. In fact, since
nobody could tell what information might be useful in this
regard, virtually all information about integrated circuit
cards was withheld.

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 26 of 36

US 7,117,485 B2

3

Due to the concern for security, applications written for
integrated circuit cards have unique properties. For example,
each application typically is identified with a particular
owner or identity. Because applications typically are written
in a low-level programming language, such as assembly
language, the applications are written for a particular type of
microcontroller. Due to the nature of low level programming
languages, unauthorized applications may access data on the
integrated circuit card. Programs written for an integrated
circuit card are identified with a particular identity so that if
two identities want to perform the same programming
function there must be two copies of some portions of the
application on the microcontroller of the integrated circuit
card.

Integrated circuit card systems have historically been
closed systems. An integrated circuit card contained a dedi-
cated application that was handcrafted to work with a
specific terminal application. Security checking when an
integrated circuit card was used consisted primarily of
making sure that the card application and the terminal
application were a matched pair and that the data on the card
was valid.

As the popularity of integrated circuit cards grew, it
became clear that integrated circuit card users would be
averse to carrying a different integrated circuit card for each
integrated circuit card application. Therefore, multiple coop-
erating applications began to be provided on single provider
integrated circuit cards. Thus, for example, an automated
teller machine (ATM) access card and a debit card may
coexist on a single integrated circuit card platform. Never-
theless, this was still a closed system since all the applica-
tions in the terminal and the card were built by one provider
having explicit knowledge of the other providers.

The paucity of information about integrated circuit
cards—particularly information about how to communicate
with them and how to program them—has impeded the
general application of the integrated circuit card. However,
the advent of public digital networking (e.g., the Internet and
the World Wide Web) has opened new domains of applica-
tion for integrated circuit cards. In particular, this has lead to
a need to load new applications on the card that do not have
explicit knowledge of the other providers, but without the
possibility of compromising the security of the card. How-
ever, typically, this is not practical with conventional cards
that are programmed using low level languages.

SUMMARY OF THE INVENTION

In general, in one aspect, the invention features an inte-
grated circuit card for use with a terminal. The integrated
circuit card includes a memory that stores an interpreter and
an application that has a high level programming language
format. A processor of the card is configured to use the
interpreter to interpret the application for execution and to
use a communicator of the card to communicate with the
terminal.

Among the advantages of the invention are one or more
of the following. New applications may be downloaded to a
smart card without compromising the security of the smart
card. These applications may be provided by different com-
panies loaded at different times using different terminals.
Security is not compromised since the applications are
protected against unauthorized access of any application
code or data by the security features provided by the Java
virtual machine. Smart card applications can be created in
high level languages such as Java and Eiffel, using powerful
mainstream program development tools. New applications

20

25

40

45

60

65

4

can be quickly prototyped and downloaded to a smart card
in a matter of hours without resorting to soft masks. Embed-
ded systems using microcontrollers can also gain many of
these advantages for downloading new applications, high
level program development, and rapid prototyping by mak-
ing use of this invention.

Implementations of the invention may include one or
more of the following. The high level programming lan-
guage format of the application may have a class file format
and may have a Java programming language format. The
processor may be a microcontroller. At least a portion of the
memory may be located in the processor.

The application may have been processed from a second
application that has a string of characters, and the string of
characters may be represented in the first application by an
identifier (e.g., an integer).

The processor may be also configured to receive a request
from a requester (e.g., a processor or a terminal) to access an
element (e.g., an application stored in the memory, data
stored in the memory or the communicator) of the card, after
receipt of the request, interact with the requester to authen-
ticate an identity of the requester, and based on the identity,
selectively grant access to the element.

The memory may also store an access control list for the
element. The access control list furnishes an indication of
types of access to be granted to the identity, and based on the
access control list, the processor selectively grants specific
types of access (e.g., reading data, writing data, appending
data, creating data, deleting data or executing an application)
to the requester.

The application may be one of a several applications
stored in the memory. The processor may be further con-
figured to receive a request from a requester to access one of
the plurality of applications; after receipt of the request,
determine whether said one of the plurality of applications
complies with a predetermined set of rules; and based on the
determination, selectively grant access to the requester to
said one of the plurality of applications. The predetermined
rules provide a guide for determining whether said one of the
plurality of applications accesses a predetermined region of
the memory. The processor may be further configured to
authenticate an identity of the requester and grant access to
said one of the plurality of applications based on the identity.

The processor may be also configured to interact with the
terminal via the communicator to authenticate an identity;
determine if the identity has been authenticated; and based
on the determination, selectively allow communication
between the terminal and the integrated circuit card.

The communicator and the terminal may communicate
via communication channels. The processor may also be
configured to assign one of the communication channels to
the identity when the processor allows the communication
between the terminal and the integrated circuit card. The
processor may also be configured to assign a session key to
the assigned communication channel and use the session key
when the processor and the terminal communicate via the
assigned communication channel.

The terminal may have a card reader, and the communi-
cator may include a contact for communicating with the card
reader. The terminal may have a wireless communication
device, and the communictor may include a wireless trans-
ceiver for communicating with the wireless communication
device. The terminal may have a wireless communication
device, and the communicator may include a wireless trans-
mitter for communicating with the wireless communication
device.

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 27 of 36

US 7,117,485 B2

5

In general, in another aspect, the invention features a
method for use with an integrated circuit card and a terminal.
The method includes storing an interpreter and at least one
application having a high level programming language for-
mat in a memory of the integrated circuit card. A processor
of the integrated circuit card uses the interpreter to interpret
the at least one application for execution, and the processor
uses a communicator of the card when communicating
between the processor and the terminal.

In general, in another aspect, the invention features a
smart card. The smart card includes a memory that stores a
Java interpreter and a processor that is configured to use the
interpreter to interpret a Java application for execution.

In general, in another aspect, the invention features a
microcontroller that has a semiconductor substrate and a
memory located in the substrate. A programming language
interpreter is stored in the memory and is configured to
implement security checks. A central processing unit is
located in the substrate and is coupled to the memory.

Implementations of the invention may include one or
more of the following. The interpreter may be a Java byte
code interpreter. The security checks may include establish-
ing firewalls and may include enforcing a sandbox security
model.

In general, in another aspect, the invention features a
smart card that has a programming language interpreter
stored in a memory of the card. The interpreter is configured
to implement security check. A central processing unit of the
card is coupled to the memory.

In general, in another aspect, the invention features an
integrated circuit card that is used with a terminal. The card
includes a communicator and a memory that stores an
interpreter and first instructions of a first application. The
first instructions have been converted from second instruc-
tions of a second application. The integrated circuit card
includes a processor that is coupled to the memory and is
configured to use the interpreter to execute the first instruc-
tions and to communicate with the terminal via the com-
municator.

Implementations of the invention may include one or
more of the following. The first and/or second applications
may have class file format(s). The first and/or second
applications may include byte codes, such as Java byte
codes. The first instructions may be generalized or renum-
bered versions of the second instructions. The second
instructions may include constant references, and the first
instructions may include constants that replace the constant
references of the second instructions. The second instruc-
tions may include references, and the references may shift
location during the conversion of the second instructions to
the first instructions. The first instructions may be relinked
to the references after the shifting. The first instructions may
include byte codes for a first type of virtual machine, and the
second instructions may include byte codes for a second
type of virtual machine. The first type is different from the
second type.

In general, in another aspect, the invention features a
method for use with an integrated circuit card. The method
includes converting second instructions of a second appli-
cation to first instructions of a first application; storing the
first instructions in a memory of the integrated circuit card;
and using an interpreter of the integrated circuit card to
execute the first instructions.

In general, in another aspect, the invention features an
integrated circuit for use with a terminal. The integrated
circuit card has a communicator that is configured to com-
municate with the terminal and a memory that stores a first

10

15

20

25

30

35

40

45

50

55

60

65

6

application that has been processed from a second applica-
tion having a string of characters. The string of characters
are represented in the first application by an identifier. The
integrated circuit card includes a processor that is coupled to
the memory. The processor is configured to use the inter-
preter to interpret the first application for execution and to
use the communicator to communicate with the terminal.

In general, in another aspect, the invention features a
method for use with an integrated circuit card and a terminal.
The method includes processing a second application to
create a first application. The second application has a string
of characters. The string of characters is represented by an
identifier in the second application. An interpreter and the
first application are stored in a memory of the integrated
circuit card. A processor uses an interpreter to interpret the
first application for execution.

In general, in another aspect, the invention features a
microcontroller that includes a memory which stores an
application and an interpreter. The application has a class file
format. A processor of the microcontroller is coupled to the
memory and is configured to use the interpreter to interpret
the application for execution.

In implementations of the invention, the microcontroller
may also include a communicator that is configured to
communicate with a terminal.

In general, in another aspect, the invention features a
method for use with an integrated circuit card. The method
includes storing a first application in a memory of the
integrated circuit card, storing a second application in the
memory of the integrated circuit card, and creating a firewall
that isolates the first and second applications so that the
second application cannot access either the first application
or data associated with the first application.

In general, in another aspect, the invention features an
integrated circuit card for use with a terminal. The integrated
circuit card includes a communicator that is configured to
communicate with the terminal, a memory and a processor.
The memory stores applications, and each application has a
high level programming language format. The memory also
stores an interpreter. The processor is coupled to the memory
and is configured to: a.) use the interpreter to interpret the
applications for execution, b.) use the interpreter to create a
firewall to isolate the applications from each other, and c.)
use the communicator to communicate with the terminal.

Other advantages and features will become apparent from
the following description and from the claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram of an integrated card system.

FIG. 2 is a flow diagram illustrating the preparation of
Java applications to be downloaded to an integrated circuit
card.

FIG. 3 is a block diagram of the files used and generated
by the card class file converter.

FIG. 4 is a block diagram illustrating the transformation
of application class file(s) into a card class file.

FIG. 5 is a flow diagram illustrating the working of the
class file converter.

FIG. 6 is a flow diagram illustrating the modification of
the byte codes.

FIG. 7 is a block diagram illustrating the transformation
of specific byte codes into general byte codes.

FIG. 8 is a block diagram illustrating the replacement of
constant references with constants.

FIG. 9 is a block diagram illustrating the replacement of
references with their updated values.

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 28 of 36

US 7,117,485 B2

7

FIG. 10 is a block diagram illustrating renumbering of
original byte codes.

FIG. 11 is a block diagram illustrating translation of
original byte codes for a different virtual machine architec-
ture.

FIG. 12 is a block diagram illustrating loading applica-
tions into an integrated circuit card.

FIG. 13 is a block diagram illustrating executing appli-
cations in an integrated circuit card.

FIG. 14 is a schematic diagram illustrating memory
organization for ROM, RAM and EEPROM.

FIG. 15 is a flow diagram illustrating the overall archi-
tecture of the Card Java virtual machine.

FIG. 16 is a flow diagram illustrating method execution in
the Card Java virtual machine with the security checks.

FIG. 17 is a flow diagram illustrating byte code execution
in the Card Java virtual machine.

FIG. 18 is a flow diagram illustrating method execution in
the Card Java virtual machine without the security checks.

FIG. 19 is a block diagram illustrating the association
between card applications and identities.

FIG. 20 is a block diagram illustrating the access rights of
a specific running application.

FIG. 21 is a perspective view of a microcontroller on a
smart card.

FIG. 22 is a perspective view of a microcontroller on a
telephone.

FIG. 23 is a perspective view of a microcontroller on a
key ring.

FIG. 24 is a perspective view of a microcontroller on a
ring.

FIG. 25 is a perspective view of a microcontroller on a
circuit card of an automobile.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 1, an integrated circuit card 10 (e.g., a
smart card) is constructed to provide a high level, Java-
based, multiple application programming and execution
environment. The integrated circuit card 10 has a commu-
nicator 12a that is configured to communicate with a ter-
minal communicator 125 of a terminal 14. In some embodi-
ments, the integrated circuit card 10 is a smart card with an
8 bit microcontroller, 512 bytes of RAM, 4K bytes of
EEPROM, and 20K of ROM; the terminal communicator
1256 is a conventional contact smart card reader; and the
terminal 14 is a conventional personal computer running the
Windows NT operating system supporting the personal
computer smart card (PC/SC) standard and providing Java
development support.

In some embodiments, the microcontroller, memory and
communicator are embedded in a plastic card that has
substantially the same dimensions as a typical credit card. In
other embodiments, the microcontroller, memory and com-
municator are mounted within bases other than a plastic
card, such as jewelry (e.g., watches, rings or bracelets),
automotive equipment, telecommunication equipment (e.g.,
subscriber identity module (SIM) cards), security devices
(e.g., cryptographic modules) and appliances.

The terminal 14 prepares and downloads Java applica-
tions to the integrated circuit card 10 using the terminal
communicator 126. The terminal communicator 125 is a
communications device capable of establishing a commu-
nications channel between the integrated circuit card 10 and
the terminal 14. Some communication options include con-
tact card readers, wireless communications via radio fre-

20

25

35

40

45

60

65

8

quency or infrared techniques, serial communication proto-
cols, packet communication protocols, ISO 7816
communication protocol, to name a few.

The terminal 14 can also interact with applications run-
ning in the integrated circuit card 10. In some cases, different
terminals may be used for these purposes. For example, one
kind of terminal may be used to prepare applications,
different terminals could be used to download the applica-
tions, and yet other terminals could be used to run the
various applications. Terminals can be automated teller
machines (ATMs), point-of-sale terminals, door security
systems, toll payment systems, access control systems, or
any other system that communicates with an integrated
circuit card or microcontroller.

The integrated circuit card 10 contains a card Java virtual
machine (Card JVM) 16, which is used to interpret appli-
cations which are contained on the card 10.

Referring to FIG. 2, the Java application 20 includes three
Java source code files A java 20a, B.java 205, and C.java
20c. These source code files are prepared and compiled in a
Java application development environment 22. When the
Java application 20 is compiled by the development envi-
ronment 22, application class files 24 are produced, with
these class files A.class 24a, B.class 244, and C.class 24¢
corresponding to their respective class Java source code 20a,
205, and 20c. The application class files 24 follow the
standard class file format as documented in chapter 4 of the
Java virtual machine specification by Tim Lindholm and
Frank Yellin, “The Java Virtual Machine Specification,”
Addison-Wesley, 1996. These application class files 24 are
fed into the card class file converter 26, which consolidates
and compresses the files, producing a single card class file
27. The card class file 27 is loaded to the integrated circuit
card 10 using a conventional card loader 28.

Referring to FIG. 3, the card class file converter 26 is a
class file postprocessor that processes a set of class files 24
that are encoded in the standard Java class file format,
optionally using a string to ID input map file 30 to produce
a Java card class file 27 in a card class file format. One such
card class file format is described in Appendix A which is
hereby incorporated by reference. In addition, in some
embodiments, the card class file converter 26 produces a
string to ID output map file 32 that is used as input for a
subsequent execution of the card class file converter.

In some embodiments, in order for the string to ID
mapping to be consistent with a previously generated card
class file (in the case where multiple class files reference the
same strings), the card class file converter 26 can accept
previously defined string to ID mappings from a string to ID
input map file 30. In the absence of such a file, the IDs are
generated by the card class file converter 26. Appendix B,
which is hereby incorporated by reference, describes one
possible way of implementing and producing the string to ID
input map file 30 and string to ID output map file 32 and
illustrates this mapping via an example.

Referring to FIG. 4, a typical application class file 24a
includes class file information 41; a class constant pool 42;
class, fields created, interfaces referenced, and method infor-
mation 43; and various attribute information 44, as detailed
in aforementioned Java Virtual Machine Specification. Note
that much of the attribute information 44 is not needed for
this embodiment and is eliminated 45 by the card class file
converter 26. Eliminated attributes include SourceFile, Con-
stantValue, Exceptions, LineNumberTable, Localvariable-
Table, and any optional vendor attributes. The typical card
class file 27 as described in Appendix A is derived from the
application class files 24 in the following manner. The card

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 29 of 36

US 7,117,485 B2

9

class file information 46 is derived from the aggregate class
file information 41 of all application class files 24a, 245, and
24c. The card class file constant pool 47 is derived from the
aggregate class constant pool 42 of all application class files
24a, 24b, and 24c. The card class, fields created, interfaces
referenced, and method information 48 is derived from the
aggregate class, fields created, interfaces referenced, and
method information 43 of all application class files 24a, 245,
and 24c. The card attribute information 49 in this embodi-
ment is derived from only the code attribute of the aggregate
attribute information 44 of all application class files 24a,
24b, and 24c.

To avoid dynamic linking in the card, all the information
that is distributed across several Java class files 24a, 245,
and 24c that form the application 24, are coalesced into one
card class file 27 by the process shown in the flowchart in
FIG. 5. The first class file to be processed is selected 51a.
The constant pool 42 is compacted 515 in the following
manner. All objects, classes, fields, methods referenced in a
Java class file 24a are identified by using strings in the
constant pool 42 of the class file 24a. The card class file
converter 26 compacts the constant pool 42 found in the Java
class file 24a into an optimized version. This compaction is
achieved by mapping all the strings found in the class file
constant pool 42 into integers (the size of which is micro-
controller architecture dependent). These integers are also
referred to as IDs. Each ID uniquely identifies a particular
object, class, field or method in the application 20. There-
fore, the card class file converter 26 replaces the strings in
the Java class file constant pool 42 with its corresponding
unique ID. Appendix B shows an example application
HelloSmartCard.java, with a table below illustrating the IDs
corresponding to the strings found in the constant pool of the
class file for this application. The IDs used for this example
are 16-but unsigned integers.

Next, the card class file converter 26 checks for unsup-
ported features Sic in the Code attribute of the input Java
class file 24a. The Card JVM 16 only supports a subset of
the full Java byte codes as described in Appendix C, which
is hereby incorporated by reference. Hence, the card class
file converter 26 checks for unsupported byte codes in the
Code attribute of the Java class file 24a. If any unsupported
byte codes are found 52, the card class file converter flags an
error and stops conversion 53. The program code fragment
marked “A” in APPENDIX D shows how these spurious
byte codes are apprehended. Another level of checking can
be performed by requiring the standard Java development
environment 22 to compile the application 20 with a *-g’
flag. Based on the aforementioned Java virtual machine
specification, this option requires the Java compiler to place
information about the variables used in a Java application 20
in the LocalVariableTable attribute of the class file 24a. The
card class file converter 26 uses this information to check if
the Java class file 24a references data types not supported by
the Java card.

Next, the card class file converter 26 discards all the
unnecessary parts 51c of the Java class file 24a not required
for interpretation. A Java class file 24a stores information
pertaining to the byte codes in the class file in the Attributes
section 44 of the Java class file. Attributes that are not
required for interpretation by the card JVM 16, such as
SourceFile, ConstantValue, Exceptions, LineNumberTable,
and LocalvariableTable may be safely discarded 45. The
only attribute that is retained is the Code attribute. The Code
attribute contains the byte codes that correspond to the
methods in the Java class file 24a.

20

25

35

40

45

60

65

10

Modifying the byte codes 54 involves examining the
Code attribute information 44 for each method in the class
file, and modifying the operands of byte codes that refer to
entries in the Java class file constant pool 42 to reflect the
entries in the card class file constant pool 47. In some
embodiments, the byte codes are also modified, as described
below.

Modifying the byte codes 54 involves five passes (with
two optional passes) as described by the flowchart in FIG. 6.
The original byte codes 60 are found in the Code attribute 44
of the Java class file 24a being processed. The first pass 61
records all the jumps and their destinations in the original
byte codes. During later byte code translation, some single
byte code may be translated to dual or triple bytes. FIG. 7
illustrates an example wherein byte code ILOAD_0 is
replaced with two bytes, byte code ILOAD and argument 0.
When this is done, the code size changes, requiring adjust-
ment of any jump destinations which are affected. Therefore,
before these transformations are made, the original byte
codes 60 are analyzed for any jump byte codes and a note
made of their position and current destination. The program
code fragment marked “B” in Appendix D shows how these
jumps are recorded. Appendix D is hereby incorporated by
reference.

Once the jumps are recorded, if the optional byte code
translation is not being performed 62, the card class file
converter 26 may proceed to the third pass 64.

Otherwise, the card class file converter converts specific
byte codes into generic byte codes. Typically, the translated
byte codes are not interpreted in the Card JVM 16 but are
supported by converting the byte codes into equivalent byte
codes that can be interpreted by the Card JVM 16 (see FIG.
7). The byte codes 70 may be replaced with another seman-
tically equivalent but different byte codes 72. This generally
entails the translation of short single specific byte codes such
as ILOAD_0 into their more general versions. For example,
ILOAD_0 may be replaced by byte code ILOAD with an
argument 0. This translation is done to reduce the number of
byte codes translated by the Card JVM 16, consequently
reducing the complexity and code space requirements for the
Card JVM 16. The program code fragment marked “C” in
Appendix D shows how these translations are made. Note
that such translations increase the size of the resulting byte
code and force the re-computation of any jumps which are
affected.

In the third pass 64, the card class file converter rebuilds
constant references via elimination of the strings used to
denote these constants. FIG. 8 shows an example wherein
the byte code LDC 80 referring to constant “18” found via
an index in the Java class file 24a constant pool 42 may be
translated into BIPUSH byte code 82. In this pass the card
class file converter 26 modifies the operands to all the byte
codes that refer to entries in the Java class file constant pool
42 to reflect their new location in the card class file constant
pool 47. FIG. 9 shows an example wherein the argument to
a byte code, INVOKESTATIC 90, refers to an entry in the
Java class file constant pool 42 that is modified to reflect the
new location of that entry in the card class file constant pool
47. The modified operand 94 shows this transformation. The
program code fragment marked “D” in Appendix D shows
how these modifications are made.

Once the constant references are relinked, if the optional
byte code modification is not being performed, the card class
file converter may proceed to the fifth and final pass 67.

Otherwise, the card class file converter modifies the
original byte codes into a different set of byte codes sup-
ported by the particular Card JVM 16 being used. One

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 30 of 36

US 7,117,485 B2

1

potential modification renumbers the original byte codes 60
into Card JVM 16 byte codes (see FIG. 10). This renum-
bering causes the byte codes 100 in the original byte codes
60 to be modified into a renumbered byte codes 102. Byte
code ILOAD recognized by value 21 may be renumbered to
be recognized by value 50. This modification may be done
for optimizing the type tests (also known in prior art as Pass
3 checks) in the Card JVM 16. The program code fragment
marked“E” in Appendix D shows an implementation of this
embodiment. This modification may be done in order to
reduce the program space required by the Card JVM 16 to
interpret the byte code. Essentially this modification
regroups the byte codes into Card JVM 16 byte codes so that
byte codes with similar operands, results are grouped
together, and there are no gaps between Card JVM 16 byte
codes. This allows the Card JVM 16 to efficiently check
Card JVM 16 byte codes and validate types as it executes.

In some embodiments, the card class file converter modi-
fies the original byte codes 60 into a different set of byte
codes designed for a different virtual machine architecture,
as shown in FIG. 11. The Java byte code ILOAD 112
intended for use on a word stack 114 may be replaced by
Card JVM 16 byte code ILOAD_B 116 to be used on a byte
stack 118. An element in a word stack 114 requires allocat-
ing 4 bytes of stack space, whereas an element in the byte
stack 118 requires only one byte of stack space. Although
this option may provide an increase in execution speed, it
risks losing the security features available in the original
byte codes.

Since the previous steps 63, 64 or 66 may have changed
the size of the byte codes 60 the card class file converter 26
has to relink 67 any jumps which have been effected. Since
the jumps were recorded in the first step 61 of the card class
file converter 26, this adjustment is carried out by fixing the
jump destinations to their appropriate values. The program
code fragment marked “F” in Appendix D shows how these
jumps are fixed.

The card class file converter now has modified byte codes
68 that is equivalent to the original byte codes 60 ready for
loading. The translation from the Java class file 24a to the
card class file 27 is now complete.

Referring back to FIG. 5, if more class files 24 remain to
be processed 55 the previous steps 51a, 515, 51c¢, 52 and 54
are repeated for each remaining class file. The card class file
converter 26 gathers 56 the maps and modified byte codes
for the classes 24 that have been processed, places them as
an aggregate and generates 57 a card class file 27. If
required, the card class file converter 26 generates a string
to ID output map file 32, that contains a list of all the new
IDs allocated for the strings encountered in the constant pool
42 of the Java class files 24 during the translation.

Referring to FIG. 12, the card loader 28 within the
terminal 14 sends a card class file to the loading and
execution control 120 within the integrated circuit card 10
using standard ISO 7816 commands. The loading and execu-
tion control 120 with a card operating system 122, which
provides the necessary system resources, including support
for a card file system 124, which can be used to store several
card applications 126. Many conventional card loaders are
written in low level languages, supported by the card oper-
ating system 122. In the preferred embodiment, the boot-
strap loader is written in Java, and the integrated circuit card
10 includes a Java virtual machine to run this application. A
Java implementation of the loading and execution control
120 is illustrated in Appendix E which is hereby incorpo-
rated by reference. The loading and execution control 120
receives the card class file 26 and produces a Java card

20

25

40

45

60

65

12

application 126x stored in the card file system 126 in the
EEPROM of the integrated circuit card 10. Multiple Java
card applications 126x, 126y, and 126z can be stored in a
single card in this manner. The loading and execution
control 120 supports commands whereby the terminal 14
can select which Java card application to run immediately,
or upon the next card reset.

Referring to FIG. 13, upon receiving a reset or an execu-
tion command from the loading and execution control 120,
the Card Java Virtual Machine (Card JVM) 16 begins
execution at a predetermined method (for example, main) of
the selected class in the selected Java Card application 126z.
The Card JVM 16 provides the Java card application 126z
access to the underlying card operating system 122, which
provides capabilities such as 1/O, EEPROM support, file
systems, access control, and other system functions using
native Java methods as illustrated in Appendix F which is
hereby incorporated by reference.

The selected Java card application 126z communicates
with an appropriate application in the terminal 14 using the
communicator 124 to establish a communication channel to
the terminal 14. Data from the communicator 12a to the
terminal 14 passes through a communicator driver 132 in the
terminal, which is specifically written to handle the com-
munications protocol used by the communicator 12a. The
data then passes to an integrated circuit card driver 134,
which is specifically written to address the capabilities of the
particular integrated circuit card 10 being used, and provides
high level software services to the terminal application 136.
In the preferred embodiment, this driver would be appro-
priate PC/SC Smartcard Service Provider (SSP) software.
The data then passes to the terminal application 136, which
must handle the capabilities provided by the particular card
application 126z being run. In this manner, commands and
responses pass back and forth between the terminal appli-
cation 136 and the selected card application 126z. The
terminal application interacts with the user, receiving com-
mands from the user, some of which are passed to the
selected Java card application 126z, and receiving responses
from the Java card application 126z, which are processed
and passed back to the user.

Referring to FIG. 14, the Card JVM 16 is an interpreter
that interprets a card application 126x. The memory
resources in the microcontroller that impact the Card JVM
16 are the Card ROM 140, Card RAM 141 and the Card
EEPROM 142. The Card ROM 140 is used to store the Card
JVM 16 and the card operating system 122. Card ROM 140
may also be used to store fixed card applications 140a and
class libraries 1405. Loadable applications 141a, 14156 and
libraries 141¢ may also be stored in Card RAM 141. The
Card JVM 16 interprets a card application 141a, 1415, or
140a. The Card JVM 16 uses the Card RAM to store the VM
stack 144a and system state variables 1445. The Card JVM
16 keeps track of the operations performed via the VM stack
144a. The objects created by the Card JVM 16 are either on
the RAM heap 144c¢, in the EEPROM heap 146a, or in the
file system 147.

All of the heap manipulated by the Card JVM 16 may be
stored in the Card RAM 141 as a RAM Heap 144c, or it may
be distributed across to the Card EEPROM 142 as a
EEPROM Heap 146a. Card RAM 141 is also used for
recording the state of the system stack 148 that is used by
routines written in the native code of the microcontroller.
The Card JVM 16 uses the Card EEPROM 142 to store
application data either in the EEPROM heap 1464 or in the
file system 147. Application data stored in a file may be
manipulated via an interface to the card operating system

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 31 of 36

US 7,117,485 B2

13
122. This interface is provided by a class library 1404 stored
in Card ROM 140, by a loadable class library 141¢ stored in
Card EEPROM 142. One such interface is described in
Appendix F. Applications and data in the card are isolated by
a firewall mechanism 149.

To cope with the limited resources available on micro-
controllers, the Card JVM 16 implements a strict subset of
the Java programming language. Consequently, a Java appli-
cation 20 compiles into a class file that contains a strict
subset of Java byte codes. This enables application program-
mers to program in this strict subset of Java and still
maintain compatibility with existing Java Virtual Machines.
The semantics of the Java byte codes interpreted by the Card
JVM 16 are described in the aforementioned Java Virtual
Machine Specification. The subset of byte codes interpreted
by the Card JVM 16 can be found in Appendix C. The card
class file converter 26 checks the Java application 20 to
ensure use of only the features available in this subset and
converts into a form that is understood and interpreted by the
Card JVM 16.

In other embodiments, the Card JVM 16 is designed to
interpret a different set or augmented set of byte codes 116.
Although a different byte code set might lead to some
performance improvements, departing from a strict Java
subset may not be desirable from the point of view of
security that is present in the original Java byte codes or
compatibility with mainstream Java development tools.

All Card JVM 16 applications 126 have a defined entry
point denoted by a class and a method in the class. This entry
point is mapped in the string to ID input map 30 and
assigned by the card class file converter 26. Classes, meth-
ods and fields within a Java application 20 are assigned IDs
by the card class file converter 26. For example, the ID
corresponding to the main application class may be defined
as Fool and the ID corresponding to its main method, such
as “main()V” could be defined as F002.

The overall execution architecture of the Card JVM is
described by the flowchart in FIG. 15. Execution of the Card
JVM 16 begins at the execution control 120, which chooses
a card application 126z to execute. It proceeds by finding
and assigning an entry point 152 (a method) in this card
application for the Card JVM 16 to interpret. The Card JVM
16 interprets the method 153. If the interpretation proceeds
successfully 154, the Card JVM 16 reports success 155
returning control back to the execution control 120. If in the
course of interpretation 153 the Card JVM 16 encounters an
unhandled error or exception (typically a resource limitation
or a security violation), the Card JVM 16 stops 156 and
reports the appropriate error to the terminal 14.

An essential part of the Card JVM 16 is a subroutine that
handles the execution of the byte codes. This subroutine is
described by the flowchart in FIG. 16. Given a method 160
it executes the byte codes in this method. The subroutine
starts by preparing for the parameters of this method 161.
This involves setting the VM stack 144a pointer, VM stack
144a frame limits, and setting the program counter to the
first byte code of the method.

Next, the method flags are checked 162. If the method is
flagged native, then the method is actually a call to native
method code (subroutine written in the microcontroller’s
native processor code). In this case, the Card JVM 16
prepares for an efficient call 163 and return to the native code
subroutine. The parameters to the native method may be
passed on the VM stack 144a or via the System stack 148.
The appropriate security checks are made and the native
method subroutine is called. On return, the result (if any) of

20

25

40

45

50

60

65

14

the native method subroutine is placed on the VM stack
144a so that it may be accessed by the next byte code to be
executed.

The dispatch loop 164 of the Card JVM 16 is then entered.
The byte code dispatch loop is responsible for preparing,
executing, and retiring each byte code. The loop terminates
when it finishes interpreting the byte codes in the method
160, or when the Card JVM 16 encounters a resource
limitation or a security violation.

If a previous byte code caused a branch to be taken 165
the Card JVM prepares for the branch 165a. The next byte
code is retrieved 1654. In order to keep the cost of process-
ing each byte code down, as many common elements such
as the byte code arguments, length, type are extracted and
stored.

To provide the security offered by the security model of
the programming language, byte codes in the class file must
be verified and determined conformant to this model. These
checks are typically carried out in prior art by a program
referred to as the byte code verifier, which operates in four
passes as described in the Java Virtual Machine Specifica-
tion. To offer the run-time security that is guaranteed by the
byte code verifier, the Card JVM 16 must perform the checks
that pertain to the Pass 3 and Pass 4 of the verifier. This
checking can be bypassed by the Card JVM 16 if it can be
guaranteed (which is almost impossible to do) that the byte
codes 60 interpreted by the Card JVM 16 are secure. At the
minimum, code security can be maintained as long as object
references cannot be faked and the VM stack 144a and local
variable bounds are observed. This requires checking the
state of the VM stack 144a with respect to the byte code
being executed.

To enforce the security model of the programming lan-
guage, a 256-byte table is created as shown in Appendix G
which is hereby incorporated by reference. This table is
indexed by the byte code number. This table contains the
type and length information associated with the indexing
byte code. It is encoded with the first 5 bits representing
type, and the last 3 bits representing length. The type and
length of the byte code is indexed directly from the table by
the byte code number. This type and length is then used for
checking as shown in Appendix H which is hereby incor-
porated by reference. In Appendix H, the checking process
begins by decoding the length and type from the table in
Appendix G which is hereby incorporated by reference. The
length is used to increment the program counter. The type is
used first for pre-execution checking, to insure that the data
types on the VM stack 144a are correct for the byte code that
is about to be executed. The 256 bytes of ROM for table
storage allows the original Java byte codes to be run in the
Card JVM 16 and minimizes the changes required to the
Java class file to be loaded in the card. Additional Java byte
codes can be easily supported since it is relatively easy to
update the appropriate table entries.

In other embodiments, as shown in FIG. 10, the Java byte
codes in the method are renumbered in such a manner that
the byte code type and length information stored in the table
in Appendix H is implicit in the reordering. Appendix H is
hereby incorporated by reference. Consequently, the checks
that must be performed on the state of the VM stack 144a
and the byte code being processed does not have to involve
a table look up. The checks can be performed by set of
simple comparisons as shown in Appendix I which is hereby
incorporated by reference. This embodiment is preferable
when ROM space is at a premium, since it eliminates a
256-byte table. However adding new byte codes to the set of
supported byte codes has to be carefully thought out since

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 32 of 36

US 7,117,485 B2

15

the new byte codes have to fit in the implicit numbering
scheme of the supported byte codes.

In another embodiment, the Card JVM 16 chooses not to
perform any security checks in favor of Card JVM 16
execution speed. This is illustrated in the flowchart in FIG.
18. The flow chart in FIG. 18 is the same as that of FIG. 16
with the security checks removed. This option is not desir-
able from the point of view of security, unless it can be
guaranteed that the byte codes are secure.

The Card JVM 16 may enforce other security checks as
well. If the byte code may reference a local variable, the
Card JVM 16 checks if this reference is valid, throwing an
error if it is not. If the reference is valid, the Card JVM 16
stores the type of the local variable for future checking. The
VM stack 144a pointer is checked to see if it is still in a valid
range. If not an exception is thrown. The byte code number
is checked. If it is not supported, an exception is thrown.

Finally, the byte code itself is dispatched 165d. The byte
codes translated by the Card JVM 16 are listed in Appendix
C. The semantics of the byte codes are described in the
aforementioned Java Virtual Machine Specification with
regard to the state of the VM stack 144a before and after the
dispatch of the byte code. Note also that some byte codes
(the byte codes, INVOKESTATIC, INVOKESPECIAL,
INVOKENONVIRTUAL and INVOKEVIRTUAL) may
cause reentry into the Card JVM 16, requiring processing to
begin at the entry of the subroutine 161. FIG. 17 shows the
flowchart of the byte code execution routine. The routine is
given a byte code 171 to execute. The Card JVM 16 executes
172 the instructions required for the byte code. If in the
course of executing the Card JVM 16 encounters a resource
limitation 173, it returns an error 156. This error is returned
to the terminal 16 by the Card JVM 16. If the byte code
executes successfully, it returns a success 175.

After execution, the type of the result is used to set the
VM stack 144a state correctly 165e, properly flagging the
data types on the VM stack 144a. The byte code information
gathered previously 1656 from the byte code info table is
used to set the state of the VM stack 144a in accordance with
the byte code that just executed.

In other embodiments, setting the output state of the VM
stack 144a with respect to the byte code executed is sim-
plified if the byte code is renumbered. This is shown in
Appendix I which is hereby incorporated by reference.

In yet another embodiment, the Card JVM 16 may bypass
setting the output state of the VM stack 144a in favor of
Card JVM 16 execution speed. This option is not desirable
from the point of view of security, unless it can be guaran-
teed that the byte codes are secure.

After the byte code has been executed, the byte code is
retired 165/. This involves popping arguments off the VM
stack 144a. Once byte code processing is completed, the
loop 164 is repeated for the next byte code for the method.

Once the dispatch loop 164 terminates, the VM stack
144a is emptied 166. This prevents any object references
filtering down to other Card JVM 16 invocations and
breaking the Card JVM’s 16 security. Termination 167 of the
byte code dispatch loop 164 indicates that the Card JVM 16
has completed executing the requested method.

To isolate data and applications in the integrated circuit
card 10 from each other, the integrated circuit card 10 relies
on the firewall mechanism 149 provided by the Card JVM
16. Because the Card JVM implements the standard pass 3
and pass 4 verifier checks, it detects any attempt by an
application to reference the data or code space used by
another application, and flag a security error 156. For
example, conventional low level applications can cast non-

20

25

40

45

60

65

16

reference data types into references, thereby enabling access
to unauthorized memory space, and violating security. With
this invention, such an attempt by a card application 126z to
use a non-reference data type as a reference will trigger a
security violation 156. In conventional Java, this protected
application environment is referred to as the sandbox appli-
cation-interpretation environment.

However, these firewall facilities do not work indepen-
dently. In fact, the facilities are overlapping and mutually
reinforcing with conventional access control lists and
encryption mechanisms shown in the following table:

Access

Control Virtual

Lists Machine Encryption
Data access access only data to
Protection control to own another

before namespace program

operation encrypted
Program access execution data
Protection control only on encrypted in

before correct program’s

execution types namespace
Communication access channel only mutually
Protection control on controls authenticated

channels in own parties can

namespace communicate

Taken together, these facilities isolate both data and
applications on the integrated circuit card 10 and ensure that
each card application 126 can access only the authorized
resources of the integrated circuit card 10.

Referring to FIG. 19, card applications 126x, 126y, 126z
can be endowed with specific privileges when the card
applications 126 execute. These privileges determine, for
example, which data files the card applications 126 can
access and what operations the card applications 126 can
perform on the file system 147. The privileges granted to the
card applications 126 are normally set at the time that a
particular card application 126z is started by the user,
typically from the terminal 14.

The integrated circuit card 10 uses cryptographic identi-
fication verification methods to associate an identity 190
(e.g., identities 190a, 1905 and 190c¢) and hence, a set of
privileges to the execution of the card application 126. The
association of the specific identity 190c¢ to the card appli-
cation 126z is made when the card application 126z begins
execution, thus creating a specific running application 200,
as shown in FIG. 20. The identity 190 is a unique legible text
string reliably associated with an identity token. The identity
token (e.g., a personal identification number (PIN) or a RSA
private key) is an encryption key.

Referring to FIG. 20, in order to run a specific card
application 126z, the identity 190¢ of the card application
126z must be authenticated. The identity 190¢ is authenti-
cated by demonstrating knowledge of the identity token
associated with the identity 190c¢. Therefore, in order to run
the card application 126z, an agent (e.g., a card holder or
another application wishing to run the application) must
show that it possesses or knows the application’s identity-
defining encryption key.

One way to demonstrate possession of an encryption key
is simply to expose the key itself. PIN verification is an
example of this form of authentication. Another way to
demonstrate the possession of an encryption key without
actually exposing the key itself is to show the ability to
encrypt or decrypt plain text with the key.

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 33 of 36

US 7,117,485 B2

17

Thus, a specific running application 200 on the integrated
circuit card 10 includes a card application 126z plus an
authenticated identity 190c¢. No card application 126 can be
run without both of these elements being in place. The card
application 126z defines data processing operations to be
performed, and the authenticated identity 190¢ determines
on what computational objects those operations may be
performed. For example, a specific application 126z can
only access identity C’s files 202 in the file system 147
associated with the specific identity 190¢, and the specific
card application 126z cannot access other files 204 that are
associated with identities other than the specific identity
190c.

The integrated circuit card 10 may take additional steps to
ensure application and data isolation. The integrated circuit
card 10 furnishes three software features sets: authenticated-
identity access control lists; a Java-based virtual machine;
and one-time session encryption keys to protect data files,
application execution, and communication channels, respec-
tively. Collectively, for one embodiment, these features sets
provide the application data firewalls 149 for one embodi-
ment. The following discusses each software feature set and
then shows how the three sets work together to insure
application and data isolation on the integrated circuit card
10.

An access control list (ACL) is associated with every
computational object (e.g., a data file or a communication
channel) on the integrated circuit card 10 that is be pro-
tected, i.e., to which access is to be controlled. An entry on
an ACL (for a particular computational object) is in a data
format referred to as an e-tuple:

type:identity:permissions

The type field indicates the type of the following identity (in
the identity field), e.g., a user (e.g., “John Smith™), or a
group. The permissions field indicates a list of operations
(e.g., read, append and update) that can be performed by the
identity on the computational object.
As an example, for a data file that has the ACL entry:
USER:AcmeAirlines:RAU,

any application whose identity is “AcmeAirlines” can read
(“R”), append (“A”) and update (“U”) the data file. In
addition, the ACL may be used selectively to permit the
creation and deletion of data files. Furthermore, the ACL
may be used selectively to permit execution of an applica-
tion.

Whenever a computational object is accessed by a run-
ning application 200, the access is intercepted by the Card
JVM 16 and passed to the card operating system 122, which
determines if there is an ACL associated with the object. If
there is an associated ACL, then the identity 190c associated
with the running application 200 is matched on the ACL. If
the identity is not found or if the identity is not permitted for
the type of access that is being requested, then the access is
denied. Otherwise, the access is allowed to proceed.

Referring to FIG. 13, to prevent the potential problems
due to the single data path between the integrated circuit
card 10 and the terminal 14, communication channel isola-
tion is accomplished by including in the identity authenti-
cation process the exchange of a one-time session key 209
between the a card application 126z and the terminal appli-
cation 136. The key 209 is then used to encrypt subsequent
traffic between the authenticating terminal application 136
and the authenticated card application 126z. Given the
one-time session key 209, a rogue terminal application can
neither “listen in” on an authenticated communication
between the terminal 14 and the integrated circuit card 10,

20

25

40

45

55

60

65

18

nor can the rogue terminal application “spoof” the card
application into performing unauthorized operations on its
behalf.

Encryption and decryption of card/terminal traffic can be
handled either by the card operating system 122 or by the
card application itself 126z. In the former case, the commu-
nication with the terminal 14 is being encrypted transpar-
ently to the application, and message traffic arrives
decrypted in the data space of the application. In the latter
case, the card application 126z elects to perform encryption
and decryption to provide an extra layer of security since the
application could encrypt data as soon as it was created and
would decrypt data only when it was about to be used.
Otherwise, the data would remain encrypted with the session
key 209.

Thus, the application firewall includes three mutually
reinforcing software-sets. Data files are protected by authen-
ticated-identity access control lists. Application execution
spaces are protected by the Card JVM 16. Communication
channels are protected with one-time session encryption
keys 209.

In other embodiments, the above-described techniques are
used with a microcontroller (such as the processor 12) may
control devices (e.g., part of an automobile engine) other
than an integrated circuit card. In these applications, the
microcontroller provides a small platform (i.e., a central
processing unit, and a memory, both of which are located on
a semiconductor substrate) for storing and executing high
level programming languages. Most existing devices and
new designs that utilize a microcontroller could use this
invention to provide the ability to program the microcon-
troller using a high level language, and application of this
invention to such devices is specifically included.

The term application includes any program, such as Java
applications, Java applets, Java aglets, Java servlets, Java
commlets, Java components, and other non-Java programs
that can result in class files as described below.

Class files may have a source other than Java program
files. Several programming languages other than Java also
have compilers or assemblers for generating class files from
their respective source files. For example, the programming
language Eiffel can be used to generate class files using
Pirmin Kalberer’s “J-Eiffel”, an Eiffel compiler with JVM
byte code generation (web site: http://
www.spin.ch~kalberer/jive/index.htm). An Ada 95 to Java
byte code translator is described in the following reference
(incorporated herein by reference): Taft, S. Tucker, “Pro-
gramming the Internet in Ada 957, proceedings of Ada
Europe ’96, 1996. Jasmin is a Java byte code assembler that
can be used to generate class files, as described in the
following reference (incorporated herein by reference):
Meyer, Jon and Troy Downing, “Java Virtual Machine”,
O’Reilly, 1997. Regardless of the source of the class files,
the above description applies to languages other than Java to
generate codes to be interpreted.

FIG. 21 shows an integrated circuit card, or smart card,
which includes a microcontroller 210 that is mounted to a
plastic card 212. The plastic card 212 has approximately the
same form factor as a typical credit card. The communicator
124 can use a contact pad 214 to establish a communication
channel, or the communicator 12a can use a wireless com-
munication system.

In other embodiments, a microcontroller 210 is mounted
into a mobile or fixed telephone 220, effectively adding
smart card capabilities to the telephone, as shown in FI1G. 22.
In these embodiments, the microcontroller 210 is mounted

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 34 of 36

US 7,117,485 B2

19

on a module (such as a Subscriber Identity Module (SIM)),
for insertion and removal from the telephone 220.

In other embodiments, a microcontroller 210 is added to
a key ring 230 as shown in FIG. 23. This can be used to
secure access to an automobile that is equipped to recognize
the identity associated with the microcontroller 210 on the
key ring 230.

Jewelry such as a watch or ring 240 can also house a
microcontroller 210 in an ergonomic manner, as shown in
FIG. 24. Such embodiments typically use a wireless com-
munication system for establishing a communication chan-
nel, and are a convenient way to implement access control
with a minimum of hassle to the user.

FIG. 25 illustrates a microcontroller 210 mounted in an
electrical subsystem 252 of an automobile 254. In this
embodiment, the microcontroller is used for a variety of
purposes, such as to controlling access to the automobile,
(e.g. checking identity or sobriety before enabling the igni-
tion system of the automobile), paying tolls via wireless
communication, or interfacing with a global positioning
system (GPS) to track the location of the automobile, to
name a few.

While specific embodiments of the present invention have
been described, various modifications and substitutions will
become apparent to one skilled in the art by this disclosure.
Such modifications and substitutions are within the scope of
the present invention, and are intended to be covered by the
appended claims.

What is claimed is:

1. A microcontroller comprising:

a memory storing;

a derivative application derived from an application
having a class file format wherein the application is
derived from an application having a class file format
by first compiling the application having a class file
format into a compiled form and then converting the
compiled form into a converted form, and

an interpreter configured to interpret derivative appli-
cations in the converted form and derived from
applications having a class file format; and

a processor coupled to the memory, the processor con-

figured to use the interpreter to interpret the derivative

application for execution.

2. The microcontroller of claim 1, further comprising: a
communicator configured to communicate with a terminal.

3. The microcontroller of claim 2, wherein the terminal
has a card reader and the communicator comprises a contact
for communicating with the card reader.

4. The microcontroller of claim 3, wherein the terminal
has a wireless communicator and a wireless transceiver for
communicating with the wireless communication device.

5. The microcontroller of claim 3, wherein the terminal
has a wireless communication device and the communicator
comprises a wireless transmitter for communicating with the
wireless communication device.

6. The microcontroller of claim 1, wherein the class file
format comprises a Java class file format.

7. A microcontroller having a set of resource constraints
and comprising:

a memory, and

an interpreter loaded in memory and operable within the

set of resource constraints, the microcontroller having;
at least one application loaded in the memory to be
interpreted by the interpreter, wherein the at least one
application is generated by a programming environ-
ment comprising:

20

25

30

40

45

60

65

20

a) a compiler for compiling application source programs
written in high level language source code form into a
compiled form, and

b) a converter for post processing the compiled form into
a minimized form suitable for interpretation within the
set of resource constraints by the interpreter.

8. The microcontroller of claim 7, wherein the compiled
form includes attributes, and the converter comprises a
means for including attributes required by the interpreter
while not including the attributes not required by the inter-
preter.

9. The microcontroller of claim 7 wherein the compiled
form is in a standard Java class file format and the converter
accepts as input the compiled form in the standard Java class
file format and produces output in a form suitable for
interpretation by the interpreter.

10. The microcontroller of claim 7 wherein the compiled
form includes associating an identifying string for objects,
classes, fields, or methods, and the converter comprises a
means for mapping such strings to unique identifiers.

11. The microcontroller of claim 10, wherein each unique
identifier is an integer.

12. The microcontroller of claim 10 wherein the mapping
of strings to unique identifiers is stored in a string to
identifier map file.

13. The microcontroller of claim 7 where in the high level
language supports a first set of features and a first set of data
types and the interpreter supports a subset of the first set of
features and a subset of the first set of data types, and
wherein the converter verifies that the compiled form only
contains features in the subset of the first set of features and
only contains data types in the subset of the first set of data
types.

14. The microcontroller of claim 10 wherein the compiled
form is in a byte code format and the converter comprises
means for translating from the byte codes in the compiled
form to byte codes in a format suitable for interpretation by
the interpreter by:

using at least one step in a process including the steps:

a) recording all jumps and their destinations in the origi-
nal byte codes;

b) converting specific byte codes into equivalent generic
byte codes or vice-versa;

¢) modifying byte code operands from references using
identifying strings to references using unique identifi-
ers; and

d) renumbering byte codes in the compiled form to
equivalent byte codes in the format suitable for inter-
pretation; and

relinking jumps for which destination address is effected
by conversion step a), b), c), or d).

15. The microcontroller of claim 7 wherein the applica-
tion program is compiled into a compiled form for which
resources required to execute or interpret the compiled form
exceed those available on the microcontroller.

16. The microcontroller of claim 7 wherein the compiled
form is designed for portability on different computer plat-
forms.

17. The microcontroller of claim 7 wherein the interpreter
is further configured to determine, during an interpretation
of an application, whether the application meets a security
criteria selected from a set of rules containing at least one
rule selected from the set:

not allowing the application access to unauthorized por-
tions of memory,

not allowing the application access to unauthorized
microcontroller resources,

enabling INNOVATION

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 35 of 36

http://www.patentlens.net/

US 7,117,485 B2

21

wherein the application is composed of byte codes and
checking a plurality of byte codes at least once prior to
execution to verify that execution of the byte codes
does not violate a security constraint.

18. The microcontroller of claim 7 wherein at least one
application program is generated by a process including the
steps of:

prior to loading the application verifying that the appli-
cation does not violate any security constraints; and

loading the application in a secure manner.

19. The microcontroller of claim 18 wherein the step of

loading in a secure manner comprises the step of:
verifying that the loading identity has permission to load
applications onto the microcontroller.

20. The microcontroller of claim 18 wherein the step of
loading m a secure manner comprises the step of:

encrypting the application to be loaded using a loading
key.

21. A method of programming a microcontroller having a
memory and a processor operating according to a set of
resource constraints, the method comprising the steps of:

inputting an application program in a first programming
language;

compiling the application program in the first program-
ming language into a first intermediate code associated
with the first programming language, wherein the first
intermediate code being interpretable by at least one
first intermediate code virtual machine;

converting the first intermediate code into a second inter-
mediate code; wherein the second intermediate code is
interpretable within the set of resource constraints by at
least one second intermediate code virtual machine;
and

loading the second intermediate code into the memory of
the microcontroller.

22. The method of programming a microcontroller of

claim 21 wherein the step of converting further comprises:

associating an identifying string for objects, classes,

fields, or methods; and mapping such strings to unique
identifiers.

23. The method of claim 22 wherein the step of mapping
comprises the step of mapping strings to integers.

24. The method of claim 21 wherein the step of converting
comprises at least one of the steps of:

a) recording all jumps and their destinations in the origi-

nal byte codes;

b) converting specific byte codes into equivalent generic
byte codes or vice-versa;

¢) modifying byte code operands from references using
identifying strings to references using unique identifi-
ers;

d) renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for interpre-
tation; and

e) relinking jumps for which destination address is
effected by conversion step a), b), ¢), or d).

25. The method of claim 21 wherein the step of loading
the second intermediate code into the memory of the micro-
controller further comprises checking the second interme-
diate code prior to loading the second intermediate code to
verify that the second intermediate code meets a predefined
integrity check and that loading is performed according to a
security protocol.

26. The method of claim 25 wherein the security protocol
requires that a particular identity must be validated to permit
loading prior to the loading of the second intermediate code.

20

25

30

40

45

60

65

22

27. The method of claim 25 further characterized by
providing a decryption key and wherein the security proto-
col requires that the second intermediate code is encrypted
using a loading key corresponding to the decryption key.

28. A microcontroller operable to execute derivative pro-
grams which are derivatives of programs written in an
interpretable programming language having a memory and
an interpreter, the microcontroller comprising:

(a) the microcontroller operating within a set of resource
constraints including the memory being of insufficient
size to permit interpretation of programs written in the
interpretable programming language; and

(b) the memory containing an interpreter operable to
interpret the derivative programs written in the deriva-
tive of the interpretable language wherein a derivative
of a program written in the interpretable programming
language is derived from the compiled version of a
program written in the interpretable programming lan-
guage by applying a conversion of the compiled ver-
sion including applying at least one rule selected from
a set of rules including:

(1) mapping strings to identifiers;

(2) performing security checks prior to or during inter-
pretation;

(3) performing structural checks prior to or during
interpretation; and

(4) performing semantic checks prior to or during
interpretation.

29. The microcontroller of claim 28 wherein the deriva-
tive programs are class files or derivatives of class files.

30. The microcontroller of claim 28 further comprising:
the memory containing less than 1 megabyte of storage.

31. The microcontroller of claim 28 wherein the security
checks the microcontroller is further comprising:

(c) logic to receive a request from a requester to access

one of a plurality of derivative programs;

(d) after receipt of the request, determine whether the one
of a plurality of derivative programs compiles with a
predetermined set of rules; and

(e) based on the determination, selectively grant access to
the requester to the one of the plurality of applications.

32. The microcontroller of claim 31, wherein the prede-
termined rules are enforced by the interpreter while the
derivative program is being interpreted by determining
whether the derivative program has access rights to a
particular part of memory the derivative program is attempt-
ing to access.

33. The microcontroller of claim 28 further wherein the
microcontroller is configured to perform at least one security
check selected from the set having the members:

(a) enforcing predetermined security rules while the
derivative program is being interpreted, thereby pre-
venting the derivative program from accessing unau-
thorized portions of memory or other unauthorized
microcontroller resources,

(b) the interpreter being configured to check each byte-
code at least once prior to execution to determine that
the bytecode can be executed in accordance with pre-
execution and post-execution checks, and

(¢) the derivative program is checked prior to being
loaded into the microcontroller to verify the integrity of
the derivative program and loading is performed
according to a security protocol.

34. The microcontroller of claim 33 wherein the security

protocol requires that a particular identity must be validated
to permit loading a derivative program onto a card.

enabling INNOVATION

http://www.patentlens.net/

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-2 Filed 10/22/10 Page 36 of 36

US 7,117,485 B2

23

35. The microcontroller of claim 33 further comprising a
decryption key wherein the security protocol requires that a
derivative program to be loaded is encrypted using a loading
key corresponding to the decryption key.

36. The microcontroller of claim 28 wherein the micro-
controller is configured to provide cryptographic services
selected from the set including encryption, decryption, sign-
ing, signature verification, mutual authentication, transport
keys, and session keys.

37. The microcontroller of claim 28 further comprising a
file system and wherein the microcontroller is configured to
provide secure access to the file system through a means
selected from the set including:

(a) the microcontroller having access control lists for
authorizing reading from a file, writing to a file, or
deletion of a file,

(b) the microcontroller enforcing key validation to estab-
lish the authorized access to a file, and

(c) the microcontroller verifying card holder identity to
establish the authorized access to a file.

38. An integrated circuit card for use with a terminal,

comprising:
a communicator configured to communicate with the
terminal;
a memory storing:
an application derived from a program written in a high
level programming language format wherein the
application is derived from a program written in a
high level programming language format by first
compiling the program into a compiled form and
then converting the compiled form into a converted
form, the converting step including modifying byte
code operands from references using identifying
strings to references using unique identifiers; and

an interpreter operable to interpret such a derivative
application in the converted form and derived from
a program written in a high level programming
language format; and

a processor coupled to the memory, the processor con-
figured to use the interpreter to interpret the application
for execution and to use the communicator to commu-
nicate with the terminal.

39. The integrated circuit card of claim 38 wherein the

converting step further comprises:

recording all jumps and their destinations in the original
byte codes;

converting specific byte codes into equivalent generic
byte codes or vice-versa; and

renumbering byte codes in a compiled format to equivalent
byte codes in a format suitable for interpretation.

40. A method for use with an integrated circuit card and
a terminal, comprising:

storing an interpreter operable to interpret programs
derived from programs written in a high level program-
ming language and an application derived from a
program written in a high level programming language
format in a memory of the integrated circuit card
wherein the application is derived from a program
written in a high level programming language format
by first compiling the program into a compiled form
and then converting the compiled form into a converted
form, the converting step including modifying byte
code operands from references using identifying strings
to references using unique identifiers; and

using a processor of the integrated circuit card to use the
interpreter to interpret the application for execution;
and

15

20

25

30

35

40

45

50

55

60

65

24
using a communicator of the card when communicating
between the processor and the terminal.
41. The method of claim 40 wherein the converting step
further comprises:
recording all jumps and their destinations in the original
byte codes;
converting specific byte codes into equivalent generic
byte codes or vice-versa; and
renumbering byte codes in a compiled format to equivalent

0 byte codes in a format suitable for interpretation.

42. An integrated circuit card for use with a terminal,
comprising;

a communicator configured to communicate with the

terminal;

a memory storing:

applications, each application derived from applica-
tions having a high level programming language
format, and
an interpreter operable to interpret applications
derived from applications having a high level
programming language format wherein the appli-
cation is derived from a program written in a high
level programming language format by first com-
piling the program into a compiled form and then
converting the compiled form into a converted
form, the converting step including modifying
byte code operands from references using identi-
fying strings to references using unique identifi-
ers; and

a processor coupled to the memory, the processor con-

figured to:

a.) use the interpreter to interpret the applications for
execution,

b.) use the interpreter to create a firewall to isolate the
applications from each other, and

c.) use the communicator to communicate with the
terminal.

43. The integrated circuit card of claim 42 wherein the
interpreter is further operable to interpret applications
derived using a converting step including:

recording all jumps and their destinations in the original

byte codes;

converting specific byte codes into equivalent generic

byte codes or vice-versa; and
renumbering byte codes in a compiled format to equivalent
byte codes in a format suitable for interpretation.

44. A microcontroller operable to execute derivative pro-
grams which are derivatives of programs written in an
interpretable programming language having a memory and
an interpreter, the microcontroller comprising:

the microcontroller operating within a set of resource

constraints including the memory being of insufficient
size to permit interpretation of programs written in the
interpretable programming language; and

the memory containing an interpreter operable to interpret

the derivative programs written in the derivative of the
interpretable language wherein a derivative of a pro-
gram written in the interpretable programming lan-
guage is derived from a compiled form of the program
written in the interpretable programming language by
performing a conversion including mapping strings to
identifiers.

enabling INNOVATION

http://www.patentlens.net/

Case 6:10-cv-00561 Document 1-3

Filed 10/22/10 Page 1 of 35

US007818727B2

a2 United States Patent

Wilkinson et al.

US 7,818,727 B2
*Qct. 19, 2010

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

@1
(22)

(65)

(63)

USING A HIGH LEVEL PROGRAMMING
LANGUAGE WITH A MICROCONTROLLER

Inventors: Timothy J. Wilkinson, London (GB);
Scott B. Guthery, Belmont, MA (US);
Ksheerabdhi Krishna, Cedar Park, TX
(US); Michael A. Montgomery, Cedar
Park, TX (US)

Assignee: Gemalto Inc., Austin, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1016 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 11/537,156

Filed: Sep. 29, 2006

Prior Publication Data

US 2008/0115117 Al May 15, 2008

Related U.S. Application Data

Continuation of application No. 10/037,390, filed on
Oct. 23, 2001, now Pat. No. 7,117,485, which is a
continuation of application No. 08/957,512, filed on
Oct. 24, 1997, now Pat. No. 6,308,317.

/120

(60) Provisional application No. 60/029,057, filed on Oct.
25, 1996.

(51) Imt.ClL
GOG6F 9/45 (2006.01)

(52) US.CL ittt 717/139
(58) Field of Classification Search 717/139
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,308,317 B1* 10/2001 Wilkinson et al. 717/139
2005/0097550 Al* 5/2005 Schwabe et al. .. 717/178
2008/0282238 Al* 11/2008 Meijeretal. 717/162

* cited by examiner

Primary Examiner—John Chavis
(74) Attorney, Agent, or Firm—Pehr B. Jansson; The Jansson
Firm

(57) ABSTRACT

An integrated circuit card is used with a terminal. The inte-
grated circuit card includes a memory that stores an inter-
preter and an application that has a high level programming
language format. A processor of the card is configured to use
the interpreter to interpret the application for execution and to
use a communicator of the card to communicate with the
terminal.

20 Claims, 23 Drawing Sheets

Execution Control

7262
Card Application

/152
Find Entry point
class ID/method ID
/153
Interpret method

Unhandiable NO
Exception/Error
756
Stop
Card JVM
and send Error
to terminal
155

[Report Success

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 2 of 35

US 7,818,727 B2

U.S. Patent Oct. 19, 2010 Sheet 1 of 23
Integrated Circuit Card
10 16
\ A Card Java Virtual Machine
(Card JVM)
12a Communicator
14 12b Terminal
A \ Communicator

Terminal

FIGURE 1

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 3 of 35

U.S. Patent Oct. 19, 2010 Sheet 2 of 23 US 7,818,727 B2

Java
Application
20b

JAVA JAVA Va 22
CODE FOR CODE FOR J
CLASS A CLASS B _ava_
(A.JAVA) (B.JAVA) | Application

Development
Environment

JAVA
CODE FOR
CLASS C
(C.JAVA)

Application
Class Files

Va 26
CODE FOR CODE FOR
CLASS A CLASS B Card
(A.CLASS) (B.CLASS) » Class File
Converter
CODE FOR
CLASS C
(C.CLASS)
/‘ 10
Card
Class File
(contains Card > Inggr]cr:tajte |
Classes Loader Card
A, B, and C)

FIGURE 2

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 4 of 35

U.S. Patent

Oct. 19,2010

Application 24

Class Files

CODE FOR
CLASS A
(A.CLASS)

CODE FOR
CLASS B
(B.CLASS)

COMPILED
CODE FOR

CLASS C
(C.CLASS)

Sheet 3 0of 23

26 N\ Card
Class File
Converter

Card
Class File
(contains
Classes

A, B, and C)

FIGURE 3

US 7,818,727 B2

String To ID

Input
Map

32

String To ID
Output
Map

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 5 of 35

U.S. Patent Oct. 19, 2010 Sheet 4 of 23 US 7,818,727 B2

Application Class Files / 24

[Class File Information Card Class File 27
41
[Ciass File Information Iir+—{ Card Class File Information}{” 46
42{\|| Class Constant Pool - Optimized Card Class - 47
Contains all the strings Constant Pool where
corresponding to Fields each string is replaced
methods and Class by an ID
names referred to in the
Java program
43 Card Class, Card Field, 48
Class, field, Interface Card Interface and Card
and Method Information Method Information
4 Attribute Information Card Attribute Information |~ 49
«+Source File Attribute ~ Code Attribute
(optionally translated)

l+-Constant Value Attribute

Code Attribute

+Exceptions Aftribute

+Line Number Table Attribute ||[1'] 24b.C

e-| ocal Variable Table Attribute

45
+Optional Vendor Attributes ||| —
¥ » Eliminated

 24a

FIGURE 4

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 6 of 35

U.S. Patent Oct. 19, 2010 Sheet 5 of 23 US 7,818,727 B2

/S 56
Gather All Constant
Class NO Pool Entries

L4

Files To
Process?

and
Modified byte codes

ya sta il ya 57
Select A Classfile Generate Card
i /- 51b Class File
Compact Constant Pool and
P 51c String to ID map
4 (if required)
Check For Unsupported Features
] ya 51d

Discard Unnecessary Parts

Flag Errors

Unsupported and
Features Stop
Found? Conversion

/34

Modify The byte codes
!

FIGURE 5

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 7 of 35

U.S. Patent Oct. 19, 2010 Sheet 6 of 23 US 7,818,727 B2

Original byte codes
60

/61
PASS 1: List all jumps and their destinations
NO Translate 62
specific
byte codes?
Va 63
PASS 2: Convert specific byte'codes into generic byte codes
g} / 64
PASS 3: Relink References
65
NO " Modify byte
codes”?
Va 66
PASS 4: Modify Java byte codes to Card JVM byte codes
3 L7
PASS 5: Readjust Jumps

68
Modified byte codes

FIGURE 6

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 8 of 35

U.S. Patent Oct. 19, 2010 Sheet 7 of 23
Va 70
0| ILOAD_O
1| woAp_1 | TTTT7e- RETU
2:| IFNE 11 | TTeel
3| BIPUSH Tl
4: 5

FIGURE 7

US 7,818,727 B2

/‘72

ILOAD

0

ILOAD

1

IFNE 2:

BIPUSH

5

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 9 of 35

U.S. Patent Oct. 19, 2010 Sheet 8 of 23 US 7,818,727 B2
o
hY)
J
%)
S| o
D. A
m
1) o
o o]
o o oo
LL
1
= -
S O
(@ LL.
o.
e
3 = slel &
X ~— \]
4 Q 0
O o N =
Al & e
"‘m') w| O Q
0| @ =
C)
— o
L
o
q-
o
o o
o (o]
o o]

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 10 of 35

US 7,818,727 B2

Sheet 9 of 23

Oct. 19,2010

U.S. Patent

|00d Jueisuo) |y sse|) pied

6 JHNOIL

|00 JueiSuo) aji} Sse|D

it Y |
C o . e@_w (Jja1) (Bel4
€444 {1004 oyl o o AN | uiew poudd® ° °
ol Gl bl Z6 L6 06 68 o o o
(xapui) ¢} (xepul) 68
JILYLSINOANI DILVLSIMOANI
v6 ./ 06 /

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 11 of 35

U.S. Patent Oct. 19, 2010
/100

0: | ALOAD 43

1 0

2: ILOAD 21

3: 1

4: | IFNE 154 2:

5: | BIPUSH 16

6: 5

Sheet 10 of 23

FIGURE 10

US 7,818,727 B2

ya 102

ALOAD 51

0

ILOAD 50

1

IFNE 27 2:

BIPUSH 49

5

U.S. Patent

Case 6:10-cv-00561

Document 1-3 Filed 10/22/10 Page 12 of 35

Oct. 19, 2010 Sheet 11 of 23 US 7,818,727 B2
112 116
ILOAD ILOAD_B
>
8 8
° /—11 4 /—118
_____ O T T T [e] [o] [o]
_____ 0 ___]
————— D -_— -
5 5
Word-Based Operand Byte-Based Operand
Stack Stack

FIGURE 11

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 13 of 35

US 7,818,727 B2

Sheet 12 of 23

Oct. 19,2010

U.S. Patent

¢l 3dNOIid

wajlsAg 8|l p1ed

waysAg BuneladQ pied

Z / 1
NOILVOITddY cch
aydvo
jonuon
uolnoax3y 1speo
puy pled
Buipeo
oz 7 gz /
suoneslddy
CTA pied
N os
pzL -/ pJe) unaa) pajelbalu)

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 14 of 35

US 7,818,727 B2

Sheet 13 of 23

Oct. 19,2010

U.S. Patent

[euiws|

[euiual

Jojesunwiwion

€1 HN9Id

pied 1nouD paleibaul

a1)

Y

18ALQ
Jojesunwiwo)

zer /1

v

JaAuq pled

1NouD pajesbou|

per

uoijeo)ddy

leuiwia|

9€L

b/

60¢

»| JOjEDIUNWWOD

A\ 4

F Y

wesAg bunesadQ pied

zzL 7

A

N

h

y

NAr PIED

9¢l

NOILVYOITddY
advo

suonediddy
pied

walsAg 9|14 ple)

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 15 of 35

US 7,818,727 B2

Sheet 14 of 23

Oct. 19,2010

U.S. Patent

Fl 34N9I4

ealy wesboid oy 44 wajsAg Buielsdo pled
8r e
G071 ~ /8 o | WArpep
Grl
uonoNASu| swij - uny
COrk N \6ps | {095\ doo yojedsig uononssu B
NOILYDINddY a3xid
02} [10400 Uo#NoeX3 puy Buipeo
NE/ NOHd33 pied
ealy weibold NOYd33 ors 7 NOY pied
7| Ravaar ssvio TiavavoTl4l bk~ WYY pied
oupL / : BN 4
671| [ENOIVOIddY TTavavoT L Se|qelEA
QLS waiss
eppL E:
601
[v z\o_Eo,_n_% FEvavo1 J4—t»
L MOEIS A
1 /| _washgany | oS Eom/» 8
egpy /|9BSH WOMDIFL - L ____ 2 e _>_<wm \ ors1

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 16 of 35

U.S. Patent Oct. 19, 2010 Sheet 15 of 23 US 7,818,727 B2
/ 120
l—» Execution Control Card Application

v / 152

Find Entry point

class ID/method ID

i ya 1563

Interpret method

154

Unhandlable
Exception/Error
encountered

YES

A4

NO
756
Stop
Card JVM
and send Error
to terminal
/‘ 155

Report Success

FIGURE 15

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 17 of 35

U.S. Patent Oct. 19, 2010 Sheet 16 of 23 US 7,818,727 B2

160
Method

| /161
Set VM stack Parameters Set Card JVM program Counter

162

Check method flag, if native? YES

a 163

v
Handle native method

NO Place return value on
VM Stack

Finished interpreting method?

166 A branch to be taken?
A 4

Empty VM Stack

1 65a—\ Prepare

167 NO) for bra[nch
Retrieve next byte code/type information /165D
! 165C
Check VM stack state (Pass 3 security checks) 4
v
Execute byte code 165d
v
Set VM stack state 165¢
_ : - 165f
Retire the byte code
{

FIGURE 16

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 18 of 35

U.S. Patent Oct. 19, 2010 Sheet 17 of 23
171
a byte code
i Va 172

execute bytecode

- 173

Resource NO

US 7,818,727 B2

limitation
encountered?

ya 175

Report Success

156

FIGURE 17

Stop
Card JVM
and
Send error to
terminal

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 19 of 35

U.S. Patent Oct. 19, 2010 Sheet 18 of 23 US 7,818,727 B2

160
Method

161
¥ /
Set VM stack Parameters Set Card JVM program Counter

162

Check method flag, if native?———'C>
v /788
Handle native method
NO Place return value on

VM Stack

|

¥ 164

inished interpreting method?

166 ~\ A branch to be taken?
Empty VM Stack 165a~| Prepare
167 NO A for branch
< .
Retrieve next byte code /~ 165D
v
Execute byte code 165d
Y

FIGURE 18

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 20 of 35

US 7,818,727 B2

Sheet 19 of 23

Oct. 19,2010

U.S. Patent

6 34N9I4

0 g v
Auspi Ayusp Ayuap)
4 _ 2061 \ $ _qo61 \ 1 _eo61
_ 061
Z A X
uonesiddy uoneoiddy uoneolddy
pieD pieD pieD
\ z9z1 _A9z1 \x9z1
\ 924

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 21 of 35

U.S. Patent Oct. 19, 2010 Sheet 20 of 23 US 7,818,727 B2
200 N\
1262
Card 4
Run Program C Apphga’uon
~190c
dentity Enter PIN of A
Access Not
Allowed
204~ v | 202~
Other Identity
Files C's Files

FIGURE 20

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 22 of 35

U.S. Patent Oct. 19, 2010 Sheet 21 of 23 US 7,818,727 B2

10‘\

210 214

FIGURE 21

220

FIGURE 22

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 23 of 35

U.S. Patent Oct. 19, 2010 Sheet 22 of 23 US 7,818,727 B2

FIGURE 23

240

FIGURE 24

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 24 of 35

U.S. Patent Oct. 19, 2010 Sheet 23 of 23 US 7,818,727 B2

r

o
o

3

000
%0

g8 ¢ 00000000

30

o

{ % z K
\
o vl
= S A O | O
%
—_————————||

Dmf%f
\ SN

FIGURE 25

/254

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 25 of 35

US 7,818,727 B2

1

USING A HIGH LEVEL PROGRAMMING
LANGUAGE WITH A MICROCONTROLLER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application, under 35
U.S.C. §120, of application Ser. No. 10/037,390, filed Oct.
23,2001, now U.S. Pat. No. 7,117,485, which is a continua-
tion application, under 35 U.S.C. §120, of application Ser.
No. 08/957,512, filed Oct. 24, 1997, now U.S. Pat. No. 6,308,
317, which, under 35 U.S.C. §119(e), claims benefit of prior
U.S. provisional application Ser. No. 60/029,057, filed Oct.
25, 1996.

RESERVATION OF COPYRIGHTS

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

This invention relates in general to the field of program-
ming, and more particularly to using a high level program-
ming language with a smart card or a microcontroller.

Software applications written in the Java high-level pro-
gramming language have been so designed that an application
written in Java can be run on many different computer brands
or computer platforms without change. This is accomplished
by the following procedure. When a Java application is writ-
ten, itis compiled into “Class” files containing byte codes that
are instructions for a hypothetical computer called a Java
Virtual Machine. An implementation of this virtual machine
is written for each platform that is supported. When a user
wishes to run a particular Java application on a selected plat-
form, the class files compiled from the desired application is
loaded onto the selected platform. The Java virtual machine
for the selected platform is run, and interprets the byte codes
in the class file, thus effectively running the Java application.

Java is described in the following references which are
hereby incorporated by reference: (1) Arnold, Ken, and James
Gosling, “The Java Programming [Language,” Addison-Wes-
ley, 1996; (2) James Gosling, Bill Joy, and Guy Steele, “The
Java Language Specification,” Sun Microsystems, 1996,
(web site: http://java.sun.com/doc/language_specification);
(3) James Gosling and Henry McGilton, “The Java Language
Environment: A White Paper,” Sun Microsystems, 1995 (web
site: http://java.sun.com/doc/language_environment/); and
(4) Tim Lindholm and Frank Yellin, “The Java Virtual
Machine Specification,” Addison-Wesley, 1997. These texts
among many others describe how to program using Java.

In order for a Java application to run on a specific platform,
a Java virtual machine implementation must be written that
will run within the constraints of the platform, and a mecha-
nism must be provided for loading the desired Java applica-
tion on the platform, again keeping within the constraints of
this platform.

Conventional platforms that support Java are typically
microprocessor-based computers, with access to relatively
large amounts of memory and hard disk storage space. Such
microprocessor implementations frequently are used in desk-
top and personal computers. However, there are no conven-

20

25

30

35

40

45

50

55

60

65

2

tional Java implementations on microcontrollers, as would
typically be used in a smart card.

Microcontrollers differ from microprocessors in many
ways. For example, a microprocessor typically has a central
processing unit that requires certain external components
(e.g., memory, input controls and output controls) to function
properly. A typical microprocessor can access from a mega-
byteto a gigabyte of memory, and is capable of processing 16,
32, or 64 bits of information or more with a single instruction.
In contrast to the microprocessor, a microcontroller includes
a central processing unit, memory and other functional ele-
ments, all on a single semiconductor substrate, or integrated
circuit (e.g., a “chip”). As compared to the relatively large
external memory accessed by the microprocessor, the typical
microcontroller accesses a much smaller memory. A typical
microcontroller can access one to sixty-four kilobytes of
built-in memory, with sixteen kilobytes being very common.

There are generally three different types of memory used:
random access memory (RAM), read only memory (ROM),
and electrically erasable programmable read only memory
(EEPROM). In a microcontroller, the amount of each kind of
memory available is constrained by the amount of space on
the integrated circuit used for each kind of memory. Typically,
RAM takes the most space, and is in shortest supply. ROM
takes the least space, and is abundant. EEPROM is more
abundant than RAM, but less than ROM.

Each kind of memory is suitable for different purposes.
Although ROM is the least expensive, it is suitable only for
data that is unchanging, such as operating system code.
EEPROM is useful for storing data that must be retained
when power is removed, but is extremely slow to write. RAM
can be written and read at high speed, but is expensive and
data in RAM is lost when power is removed. A microproces-
sor system typically has relatively little ROM and EEPROM,
and has 1 to 128 megabytes of RAM, since it is not con-
strained by what will fit on a single integrated circuit device,
and often has access to an external disk memory system that
serves as a large writable, non-volatile storage area at a lower
costthan EEPROM. However, a microcontroller typically has
a small RAM of 0.1 to 2.0 K, 2K to 8K of EEPROM, and
8K-56K of ROM.

Due to the small number of external components required
and their small size, microcontrollers frequently are used in
integrated circuit cards, such as smart cards. Such smart cards
come in a variety of forms, including contact-based cards,
which must be inserted into a reader to be used, and contact-
less cards, which need not be inserted. In fact, microcontrol-
lers with contactless communication are often embedded into
specialized forms, such as watches and rings, effectively inte-
grating the functionality of a smart card in an ergonomically
attractive manner.

Because of the constrained environment, applications for
smart cards are typically written in a low level programming
language (e.g., assembly language) to conserve memory.

The integrated circuit card is a secure, robust, tamper-
resistant and portable device for storing data. The integrated
circuit card is the most personal of personal computers
because of its small size and because of the hardware and
software data security features unique to the integrated circuit
card.

The primary task of the integrated circuit card and the
microcontroller on the card is to protect the data stored on the
card. Consequently, since its invention in 1974, integrated
circuit card technology has been closely guarded on these
same security grounds. The cards were first used by French
banks as debit cards. In this application, before a financial
transaction based on the card is authorized, the card user must

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 26 of 35

US 7,818,727 B2

3

demonstrate knowledge of a 4-digit personal identification
number (PIN) stored in the card in addition to being in pos-
session of the card. Any information that might contribute to
discovering the PIN number on a lost or stolen card was
blocked from public distribution. In fact, since nobody could
tell what information might be useful in this regard, virtually
all information about integrated circuit cards was withheld.

Due to the concern for security, applications written for
integrated circuit cards have unique properties. For example,
each application typically is identified with a particular owner
or identity. Because applications typically are written in a
low-level programming language, such as assembly lan-
guage, the applications are written for a particular type of
microcontroller. Due to the nature of low level programming
languages, unauthorized applications may access data on the
integrated circuit card. Programs written for an integrated
circuit card are identified with a particular identity so that if
two identities want to perform the same programming func-
tion there must be two copies of some portions of the appli-
cation on the microcontroller of the integrated circuit card

Integrated circuit card systems have historically been
closed systems. An integrated circuit card contained a dedi-
cated application that was handcrafted to work with a specific
terminal application. Security checking when an integrated
circuit card was used consisted primarily of making sure that
the card application and the terminal application were a
matched pair and that the data on the card was valid.

As the popularity of integrated circuit cards grew, it
became clear that integrated circuit card users would be
averse to carrying a different integrated circuit card for each
integrated circuit card application. Therefore, multiple coop-
erating applications began to be provided on single provider
integrated circuit cards. Thus, for example, an automated
teller machine (ATM) access card and a debit card may coex-
ist on a single integrated circuit card platform. Nevertheless,
this was still a closed system since all the applications in the
terminal and the card were built by one provider having
explicit knowledge of the other providers.

The paucity of information about integrated circuit cards—
particularly information about how to communicate with
them and how to program them—has impeded the general
application of the integrated circuit card. However, the advent
of public digital networking (e.g., the Internet and the World
Wide Web) has opened new domains of application for inte-
grated circuit cards. In particular, this has lead to a need to
load new applications on the card that do not have explicit
knowledge of the other providers, but without the possibility
of compromising the security of the card. However, typically,
this is not practical with conventional cards that are pro-
grammed using low level languages.

SUMMARY OF THE INVENTION

In general, in one aspect, the invention features an inte-
grated circuit card for use with a terminal. The integrated
circuit card includes a memory that stores an interpreter and
an application that has a high level programming language
format. A processor of the card is configured to use the inter-
preter to interpret the application for execution and to use a
communicator of the

Among the advantages of the invention are one or more of
the following. New applications may be downloaded to a
smart card without compromising the security of the smart
card. These applications may be provided by different com-
panies loaded at different times using different terminals.
Security is not compromised since the applications are pro-
tected against unauthorized access of any application code or

20

25

30

35

40

45

50

55

60

65

4

data by the security features provided by the Java virtual
machine. Smart card applications can be created in high level
languages such as Java and Eiffel, using powerful mainstream
program development tools. New applications can be quickly
prototyped and downloaded to a smart card in a matter of
hours without resorting to soft masks. Embedded systems
using microcontrollers can also gain many of these advan-
tages for downloading new applications, high level program
development, and rapid prototyping by making use of this
invention.

Implementations of the invention may include one or more
of the following. The high level programming language for-
mat of the application may have a class file format and may
have a Java programming language format. The processor
may be a microcontroller. At least a portion of the memory
may be located in the processor.

The application may have been processed from a second
application that has a string of characters, and the string of
characters may be represented in the first application by an
identifier (e.g., an integer).

The processor may be also configured to receive a request
from a requester (e.g., a processor or a terminal) to access an
element (e.g., an application stored in the memory, data stored
in the memory or the communicator) of the card, after receipt
of the request, interact with the requester to authenticate an
identity of the requester, and based on the identity, selectively
grant access to the element.

The memory may also store an access control list for the
element. The access control list furnishes an indication of
types of access to be granted to the identity, and based on the
access control list, the processor selectively grants specific
types of access (e.g., reading data, writing data, appending
data, creating data, deleting data or executing an application)
to the requester.

The application may be one of a several applications stored
in the memory. The processor may be further configured to
receive a request from a requester to access one of the plural-
ity of applications; after receipt of the request, determine
whether said one of the plurality of applications complies
with a predetermined set of rules; and based on the determi-
nation, selectively grant access to the requester to said one of
the plurality of applications. The predetermined rules provide
a guide for determining whether said one of the plurality of
applications accesses a predetermined region of the memory.
The processor may be further configured to authenticate an
identity of the requester and grant access to said one of the
plurality of applications based on the identity.

The processor may be also configured to interact with the
terminal via the communicator to authenticate an identity;
determine if the identity has been authenticated; and based on
the determination, selectively allow communication between
the terminal and the integrated circuit card.

The communicator and the terminal may communicate via
communication channels. The processor may also be config-
ured to assign one of the communication channels to the
identity when the processor allows the communication
between the terminal and the integrated circuit card. The
processor may also be configured to assign a session key to
the assigned communication channel and use the session key
when the processor and the terminal communicate via the
assigned communication channel.

The terminal may have a card reader, and the communica-
tor may include a contact for communicating with the card
reader. The terminal may have a wireless communication
device, and the communicator may include a wireless trans-
ceiver for communicating with the wireless communication
device. The terminal may have a wireless communication

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 27 of 35

US 7,818,727 B2

5

device, and the communicator may include a wireless trans-
mitter for communicating with the wireless communication
device.

In general, in another aspect, the invention features a
method for use with an integrated circuit card and a terminal.
The method includes storing an interpreter and at least one
application having a high level programming language for-
mat in a memory of the integrated circuit card. A processor of
the integrated circuit card uses the interpreter to interpret the
at least one application for execution, and the processor uses
a communicator of the card when communicating between
the processor and the terminal.

In general, in another aspect, the invention features a smart
card. The smart card includes a memory that stores a Java
interpreter and a processor that is configured to use the inter-
preter to interpret a Java application for execution.

In general, in another aspect, the invention features a
microcontroller that has a semiconductor substrate and a
memory located in the substrate. A programming language
interpreter is stored in the memory and is configured to imple-
ment security checks. A central processing unit is located in
the substrate and is coupled to the memory.

Implementations of the invention may include one or more
of the following. The interpreter may be a Java byte code
interpreter. The security checks may include establishing fire-
walls and may include enforcing a sandbox security model.

In general, in another aspect, the invention features a smart
card that has a programming language interpreter stored in a
memory of the card. The interpreter is configured to imple-
ment security check. A central processing unit of the card is
coupled to the memory.

In general, in another aspect, the invention features an
integrated circuit card that is used with a terminal. The card
includes a communicator and a memory that stores an inter-
preter and first instructions of a first application. The first
instructions have been converted from second instructions of
a second application. The integrated circuit card includes a
processor that is coupled to the memory and is configured to
use the interpreter to execute the first instructions and to
communicate with the terminal via the communicator.

Implementations of the invention may include one or more
of the following. The first and/or second applications may
have class file format(s). The first and/or second applications
may include byte codes, such as Java byte codes. The first
instructions may be generalized or renumbered versions of
the second instructions. The second instructions may include
constant references, and the first instructions may include
constants that replace the constant references of the second
instructions. The second instructions may include references,
and the references may shift location during the conversion of
the second instructions to the first instructions. The first
instructions may be relinked to the references after the shift-
ing. The first instructions may include byte codes for a first
type of virtual machine, and the second instructions may
include byte codes for a second type of virtual machine. The
first type is different from the second type.

In general, in another aspect, the invention features a
method for use with an integrated circuit card. The method
includes converting second instructions of a second applica-
tion to first instructions of a first application; storing the first
instructions in a memory of the integrated circuit card; and
using an interpreter of the integrated circuit card to execute
the first instructions.

In general, in another aspect, the invention features an
integrated circuit for use with a terminal. The integrated cir-
cuit card has a communicator that is configured to communi-
cate with the terminal and a memory that stores a first appli-

20

25

30

35

40

45

50

55

60

65

6

cation that has been processed from a second application
having a string of characters. The string of characters are
represented in the first application by an identifier. The inte-
grated circuit card includes a processor that is coupled to the
memory. The processor is configured to use the interpreter to
interpret the first application for execution and to use the
communicator to communicate with the terminal.

In general, in another aspect, the invention features a
method for use with an integrated circuit card and a terminal.
The method includes processing a second application to cre-
ate a first application. The second application has a string of
characters. The string of characters is represented by an iden-
tifier in the second application. An interpreter and the first
application are stored in a memory of the integrated circuit
card. A processor uses an interpreter to interpret the first
application for execution.

In general, in another aspect, the invention features a
microcontroller that includes a memory which stores an
application and an interpreter. The application has a class file
format. A processor of the microcontroller is coupled to the
memory and is configured to use the interpreter to interpret
the application for execution.

In implementations of the invention, the microcontroller
may also include a communicator that is configured to com-
municate with a terminal.

In general, in another aspect, the invention features a
method for use with an integrated circuit card. The method
includes storing a first application in a memory of the inte-
grated circuit card, storing a second application in the
memory of the integrated circuit card, and creating a firewall
that isolates the first and second applications so that the sec-
ond application cannot access either the first application or
data associated with the first application.

In general, in another aspect, the invention features an
integrated circuit card for use with a terminal. The integrated
circuit card includes a communicator that is configured to
communicate with the terminal, a memory and a processor.
The memory stores applications, and each application has a
high level programming language format. The memory also
stores an interpreter. The processor is coupled to the memory
and is configured to: a.) use the interpreter to interpret the
applications for execution, b.) use the interpreter to create a
firewall to isolate the applications from each other, and c.) use
the communicator to communicate with the terminal.

Other advantages and features will become apparent from
the following description and from the claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram of an integrated card system.

FIG. 2 is a flow diagram illustrating the preparation of Java
applications to be downloaded to an integrated circuit card.

FIG. 3 is a block diagram of the files used and generated by
the card class file converter.

FIG. 4 is a block diagram illustrating the transformation of
application class file(s) into a card class file.

FIG. 5 is a flow diagram illustrating the working of the
class file converter.

FIG. 6 is a flow diagram illustrating the modification of'the
byte codes.

FIG. 7 is a block diagram illustrating the transformation of
specific byte codes into general byte codes.

FIG. 8 is a block diagram illustrating the replacement of
constant references with constants.

FIG. 9 is a block diagram illustrating the replacement of
references with their updated values.

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 28 of 35

US 7,818,727 B2

7

FIG. 10 is a block diagram illustrating renumbering of
original byte codes.

FIG. 11 is a block diagram illustrating translation of origi-
nal byte codes for a different virtual machine architecture.

FIG. 12 is a block diagram illustrating loading applications
into an integrated circuit card.

FIG. 13 is a block diagram illustrating executing applica-
tions in an integrated circuit card.

FIG. 14 is a schematic diagram illustrating memory orga-
nization for ROM, RAM and EEPROM.

FIG. 15 is a flow diagram illustrating the overall architec-
ture of the Card Java virtual machine.

FIG. 16 is a flow diagram illustrating method execution in
the Card Java virtual machine with the security checks.

FIG. 17 is a flow diagram illustrating byte code execution
in the Card Java virtual machine.

FIG. 16 is a flow diagram illustrating method execution in
the Card Java virtual machine without the security checks.

FIG. 19 is a block diagram illustrating the association
between card applications and identities.

FIG. 20 is a block diagram illustrating the access rights of
a specific running application.

FIG. 21 is a perspective view of a microcontroller on a
smart card.

FIG. 22 is a perspective view of a microcontroller on a
telephone.

FIG. 23 is a perspective view of a microcontroller on a key
ring.

FIG. 24 is a perspective view of a microcontroller on a ring.

FIG. 25 is a perspective view of a microcontroller on a
circuit card of an automobile.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring to FIG. 1, an integrated circuit card 10 (e.g., a
smart card) is constructed to provide a high level, Java-based,
multiple application programming and execution environ-
ment. The integrated circuit card 10 has a communicator 12a
that is configured to communicate with a terminal communi-
cator 124 of a terminal 14. In some embodiments, the inte-
grated circuit card 10 is a smart card with an 8 bit microcon-
troller, 512 bytes of RAM, 4K bytes of EEPROM, and 20K of
ROM,; the terminal communicator 125 is a conventional con-
tact smart card reader; and the terminal 14 is a conventional
personal computer running the Windows NT operating sys-
tem supporting the personal computer smart card (PC/SC)
standard and providing Java development support.

In some embodiments, the microcontroller, memory and
communicator are embedded in a plastic card that has sub-
stantially the same dimensions as a typical credit card. In
other embodiments, the microcontroller, memory and com-
municator are mounted within bases other than a plastic card,
such as jewelry (e.g., watches, rings or bracelets), automotive
equipment, telecommunication equipment (e.g., subscriber
identity module (SIM) cards), security devices (e.g., crypto-
graphic modules) and appliances.

The terminal 14 prepares and downloads Java applications
to the integrated circuit card 10 using the terminal communi-
cator 125. The terminal communicator 125 is a communica-
tions device capable of establishing a communications chan-
nel between the integrated circuit card 10 and the terminal 14.
Some communication options include contact card readers,
wireless communications via radio frequency or infrared
techniques, serial communication protocols, packet commu-
nication protocols, ISO 7816 communication protocol, to
name a few.

20

25

30

35

40

45

50

55

60

65

8

The terminal 14 can also interact with applications running
in the integrated circuit card 10. In some cases, different
terminals may be used for these purposes. For example, one
kind of terminal may be used to prepare applications, differ-
ent terminals could be used to download the applications, and
yet other terminals could be used to run the various applica-
tions. Terminals can be automated teller machines (ATMs),
point-of-sale terminals, door security systems, toll payment
systems, access control systems, or any other system that
communicates with an integrated circuit card or microcon-
troller.

The integrated circuit card 10 contains a card Java virtual
machine (Card JVM) 16, which is used to interpret applica-
tions which are contained on the card 10.

Referring to FIG. 2, the Java application 20 includes three
Java source code files A.java 20a, B.java 205, and C.java 20c.
These source code files are prepared and compiled in a Java
application development environment 22. When the Java
application 20 is compiled by the development environment
22, application class files 24 are produced, with these class
files A class 24a, B.class 245, and C.class 24c¢ corresponding
to their respective class Java source code 20a, 205, and 20c.
The application class files 24 follow the standard class file
format as documented in chapter 4 of the Java virtual machine
specification by Tim Lindholm and Frank Yellin, “The Java
Virtual Machine Specification,” Addison-Wesley, 1996.
These application class files 24 are fed into the card class file
converter 26, which consolidates and compresses the files,
producing a single card class file 27. The card class file 27 is
loaded to the integrated circuit card 10 using a conventional
card loader 28.

Referring to FIG. 3, the card class file converter 26 is a class
file postprocessor that processes a set of class files 24 that are
encoded in the standard Java class file format, optionally
using a string to ID input map file 30 to produce a Java card
class file 27 in a card class file format. One such card class file
format is described in Appendix A which is hereby incorpo-
rated by reference. In addition, in some embodiments, the
card class file converter 26 produces a string to ID output map
file 32 that is used as input for a subsequent execution of the
card class file converter.

In some embodiments, in order for the string to ID mapping
to be consistent with a previously generated card class file (in
the case where multiple class files reference the same strings),
the card class file converter 26 can accept previously defined
string to ID mappings from a string to ID input map file 30. In
the absence of such a file, the IDs are generated by the card
class file converter 26. Appendix B, which is hereby incorpo-
rated by reference, describes one possible way of implement-
ing and producing the string to ID input map file 30 and string
to ID output map file 32 and illustrates this mapping via an
example.

Referring to FIG. 4, a typical application class file 24a
includes class file information 41; a class constant pool 42;
class, fields created, interfaces referenced, and method infor-
mation 43; and various attribute information 44, as detailed in
aforementioned Java Virtual Machine Specification. Note
that much of the attribute information 44 is not needed for this
embodiment and is eliminated 45 by the card class file con-
verter 26. Eliminated attributes include SourceFile, Con-
stantValue, Exceptions, LineNumberTable, LocalVariable-
Table, and any optional vendor attributes. The typical card
class file 27 as described in Appendix A is derived from the
application class files 24 in the following manner. The card
class file information 46 is derived from the aggregate class
file information 41 of all application class files 24a, 245, and
24c. The card class file constant pool 47 is derived from the

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 29 of 35

US 7,818,727 B2

9

aggregate class constant pool 42 of all application class files
24a, 24b, and 24c. The card class, fields created, interfaces
referenced, and method information 48 is derived from the
aggregate class, fields created, interfaces referenced, and
method information 43 of all application class files 24a, 245,
and 24c¢. The card attribute information 49 in this embodiment
is derived from only the code attribute of the aggregate
attribute information 44 of all application class files 24a, 245,
and 24c.

To avoid dynamic linking in the card, all the information
that is distributed across several Java class files 24a, 24b, and
24 that form the application 24, are coalesced into one card
class file 27 by the process shown in the flowchart in FIG. 5.
The first class file to be processed is selected 51a. The con-
stant pool 42 is compacted 515 in the following manner. All
objects, classes, fields, methods referenced in a Java class file
24a are identified by using strings in the constant pool 42 of
the class file 24a. The card class file converter 26 compacts
the constant pool 42 found in the Java class file 24a into an
optimized version. This compaction is achieved by mapping
all the strings found in the class file constant pool 42 into
integers (the size of which is microcontroller architecture
dependent). These integers are also referred to as IDs. Each
ID uniquely identifies a particular object, class, field or
method in the application 20. Therefore, the card class file
converter 26 replaces the strings in the Java class file constant
pool 42 with its corresponding unique ID. Appendix B shows
an example application HelloSmartCard.java, with a table
below illustrating the IDs corresponding to the strings found
in the constant pool of the class file for this application. The
IDs used for this example are 16-bit unsigned integers.

Next, the card class file converter 26 checks for unsup-
ported features 51c in the Code attribute of the input Java
class file 24a. The Card JVM 16 only supports a subset of the
full Java byte codes as described in Appendix C, which is
hereby incorporated by reference. Hence, the card class file
converter 26 checks for unsupported byte codes in the Code
attribute of the Java class file 24a. If any unsupported byte
codes are found 52, the card class file converter flags an error
and stops conversion 53. The program code fragment marked
“A” in APPENDIX D shows how these spurious byte codes
are apprehended. Another level of checking can be performed
by requiring the standard Java development environment 22
to compile the application 20 with a ‘-g’ flag. Based on the
aforementioned Java virtual machine specification, this
option requires the Java compiler to place information about
the variables used in a Java application 20 in the Local Vari-
ableTable attribute of the class file 24a. The card class file
converter 26 uses this information to check if the Java class
file 24a references data types not supported by the Java card.

Next, the card class file converter 26 discards all the unnec-
essary parts 51c of the Java class file 24a not required for
interpretation. A Java class file 24a stores information per-
taining to the byte codes in the class file in the Attributes
section 44 of the Java class file. Attributes that are not required
for interpretation by the card JVM 16, such as SourceFile,
ConstantValue, Exceptions, LineNumberTable, and Local-
VariableTable may be safely discarded 45. The only attribute
that is retained is the Code attribute. The Code attribute con-
tains the byte codes that correspond to the methods in the Java
class file 24a.

Modifying the byte codes 54 involves examining the Code
attribute information 44 for each method in the class file, and
modifying the operands of byte codes that refer to entries in
the Java class file constant pool 42 to reflect the entries in the
card class file constant pool 47. In some embodiments, the
byte codes are also modified, as described below.

20

25

30

35

40

45

50

55

60

65

10

Modifying the byte codes 54 involves five passes (with two
optional passes) as described by the flowchart in FIG. 6. The
original byte codes 60 are found in the Code attribute 44 of the
Java class file 24a being processed. The first pass 61 records
all the jumps and their destinations in the original byte codes.
During later byte code translation, some single byte code may
be translated to dual or triple bytes. FIG. 7 illustrates an
example wherein byte code ILOAD_0 is replaced with two
bytes, byte code ILOAD and argument 0. When this is done,
the code size changes, requiring adjustment of any jump
destinations which are affected. Therefore, before these trans-
formations are made, the original byte codes 60 are analyzed
for any jump byte codes and a note made of their position and
current destination. The program code fragment marked “B”
in Appendix D shows how these jumps are recorded. Appen-
dix D is hereby incorporated by reference.

Once the jumps are recorded, if the optional byte code
translation is not being performed 62, the card class file
converter 26 may proceed to the third pass 64.

Otherwise, the card class file converter converts specific
byte codes into generic byte codes. Typically, the translated
byte codes are not interpreted in the Card JVM 16 but are
supported by converting the byte codes into equivalent byte
codes that can be interpreted by the Card JVM 16 (see F1G. 7).
The byte codes 70 may be replaced with another semantically
equivalent but different byte codes 72. This generally entails
the translation of short single specific byte codes such as
ILOAD_0 into their more general versions. For example,
ILOAD_0 may be replaced by byte code ILOAD with an
argument 0. This translation is done to reduce the number of
byte codes translated by the Card JVM 16, consequently
reducing the complexity and code space requirements for the
Card JVM 16. The program code fragment marked “C” in
Appendix D shows how these translations are made. Note that
such translations increase the size of the resulting byte code
and force the re-computation of any jumps which are affected.

In the third pass 64, the card class file converter rebuilds
constant references via elimination of the strings used to
denote these constants. F1G. 8 shows an example wherein the
byte code LDC 80 referring to constant “18” found via an
index in the Java class file 24a constant pool 42 may be
translated into BIPUSH byte code 82. In this pass the card
class file converter 26 modifies the operands to all the byte
codes that refer to entries in the Java class file constant pool 42
to reflect their new location in the card class file constant pool
47. FIG. 9 shows an example wherein the argument to a byte
code, INVOKESTATIC 90, refers to an entry in the Java class
file constant pool 42 that is modified to reflect the new loca-
tion of that entry in the card class file constant pool 47. The
modified operand 94 shows this transformation. The program
code fragment marked “D” in Appendix D shows how these
modifications are made.

Once the constant references are relinked, if the optional
byte code modification is not being performed, the card class
file converter may proceed to the fifth and final pass 67.

Otherwise, the card class file converter modifies the origi-
nal byte codes into a different set of byte codes supported by
the particular Card JVM 16 being used. One potential modi-
fication renumbers the original byte codes 60 into Card JVM
16 byte codes (see FIG. 10). This renumbering causes the byte
codes 100 in the original byte codes 60 to be modified into a
renumbered byte codes 102. Byte code ILOAD recognized by
value 21 may be renumbered to be recognized by value 50.
This modification may be done for optimizing the type tests
(also known in prior art as Pass 3 checks) in the Card JIVM 16.
The program code fragment marked “E” in Appendix D
shows an implementation of this embodiment. This modifi-

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 30 of 35

US 7,818,727 B2

11

cation may be done in order to reduce the program space
required by the Card JVM 16 to interpret the byte code.
Essentially this modification regroups the byte codes into
Card JVM 16 byte codes so that byte codes with similar
operands, results are grouped together, and there are no gaps
between Card JVM 16 byte codes. This allows the Card JVM
16 to efficiently check Card JVM 16 byte codes and validate
types as it executes.

In some embodiments, the card class file converter modi-
fies the original byte codes 60 into a different set of byte codes
designed for a different virtual machine architecture, as
shown in FIG. 11. The Java byte code ILOAD 112 intended
for use on a word stack 114 may be replaced by Card JVM 16
byte code ILOAD_B 116 to be used on a byte stack 118. An
element in a word stack 114 requires allocating 4 bytes of
stack space, whereas an element in the byte stack 118 requires
only one byte of stack space. Although this option may pro-
vide an increase in execution speed, it risks losing the security
features available in the original byte codes.

Since the previous steps 63, 64 or 66 may have changed the
size of the byte codes 60 the card class file converter 26 has to
relink 67 any jumps which have been effected. Since the
jumps were recorded in the first step 61 of the card class file
converter 26, this adjustment is carried out by fixing the jump
destinations to their appropriate values. The program code
fragment marked “F”” in Appendix D shows how these jumps
are fixed.

The card class file converter now has modified byte codes
68 that is equivalent to the original byte codes 60 ready for
loading. The translation from the Java class file 24a to the card
class file 27 is now complete.

Referring back to FIG. 5, if more class files 24 remain to be
processed 55 the previous steps 51a, 515, 51c¢, 52 and 54 are
repeated for each remaining class file. The card class file
converter 26 gathers 56 the maps and modified byte codes for
the classes 24 that have been processed, places them as an
aggregate and generates 57 a card class file 27. If required, the
card class file converter 26 generates a string to ID output map
file 32, that contains a list of all the new IDs allocated for the
strings encountered in the constant pool 42 of the Java class
files 24 during the translation.

Referring to FIG. 12, the card loader 28 within the terminal
14 sends a card class file to the loading and execution control
120 within the integrated circuit card 10 using standard ISO
7816 commands. The loading and execution control 120 with
a card operating system 122, which provides the necessary
system resources, including support for a card file system
124, which can be used to store several card applications 126.
Many conventional card loaders are written in low level lan-
guages, supported by the card operating system 122. In the
preferred embodiment, the bootstrap loader is written in Java,
and the integrated circuit card 10 includes a Java virtual
machine to run this application. A Java implementation of the
loading and execution control 120 is illustrated in Appendix E
which is hereby incorporated by reference. The loading and
execution control 120 receives the card class file 26 and
produces a Java card application 126x stored in the card file
system 126 in the EEPROM of the integrated circuit card 10.
Multiple Java card applications 126x, 126y, and 126z can be
stored in a single card in this manner. The loading and execu-
tion control 120 supports commands whereby the terminal 14
can select which Java card application to run immediately, or
upon the next card reset.

Referring to FIG. 13, upon receiving a reset or an execution
command from the loading and execution control 120, the
Card Java Virtual Machine (Card JVM) 16 begins execution
at a predetermined method (for example, main) of the

20

25

30

35

40

45

50

55

60

65

12

selected class in the selected Java Card application 126z. The
Card JVM 16 provides the Java card application 126z access
to the underlying card operating system 122, which provides
capabilities such as 1/0, EEPROM support, file systems,
access control, and other system functions using native Java
methods as illustrated in Appendix F which is hereby incor-
porated by reference.

The selected Java card application 126z communicates
with an appropriate application in the terminal 14 using the
communicator 12a to establish a communication channel to
the terminal 14. Data from the communicator 12a to the
terminal 14 passes through a communicator driver 132 in the
terminal, which is specifically written to handle the commu-
nications protocol used by the communicator 12a. The data
then passes to an integrated circuit card driver 134, which is
specifically written to address the capabilities of the particu-
lar integrated circuit card 10 being used, and provides high
level software services to the terminal application 136. In the
preferred embodiment, this driver would be appropriate
PC/SC Smartcard Service Provider (SSP) software. The data
then passes to the terminal application 136, which must
handle the capabilities provided by the particular card appli-
cation 126z being run. In this manner, commands and
responses pass back and forth between the terminal applica-
tion 136 and the selected card application 126z. The terminal
application interacts with the user, receiving commands from
the user, some of which are passed to the selected Java card
application 126z, and receiving responses from the Java card
application 126z, which are processed and passed back to the
user.

Referring to FIG. 14, the Card JVM 16 is an interpreter that
interprets a card application 126x. The memory resources in
the microcontroller that impact the Card JVM 16 are the Card
ROM 140, Card RAM 141 and the Card EEPROM 142. The
Card ROM 140 is used to store the Card JVM 16 and the card
operating system 122. Card ROM 140 may also be used to
store fixed card applications 140a and class libraries 1405.
Loadable applications 141a, 1415 and libraries 141c¢ may also
be stored in Card RAM 141. The Card JVM 16 interprets a
card application 141a, 1415, or 140a. The Card JVM 16 uses
the Card RAM to store the VM stack 144a and system state
variables 1445. The Card JVM 16 keeps track of the opera-
tions performed via the VM stack 144a. The objects created
by the Card JVM 16 are either on the RAM heap 144c, in the
EEPROM heap 1464, or in the file system 147.

All of the heap manipulated by the Card JVM 16 may be
stored in the Card RAM 141 as a RAM Heap 144c¢, or it may
be distributed across to the Card EEPROM 142 as a EEPROM
Heap 146a. Card RAM 141 is also used for recording the state
of'the system stack 148 that is used by routines written in the
native code of the microcontroller. The Card JVM 16 uses the
Card EEPROM 142 to store application data either in the
EEPROM heap 146a or in the file system 147. Application
data stored in a file may be manipulated via an interface to the
card operating system 122. This interface is provided by a
class library 1405 stored in Card ROM 140, by a loadable
class library 141¢ stored in Card EEPROM 142. One such
interface is described in Appendix F. Applications and data in
the card are isolated by a firewall mechanism 149.

To cope with the limited resources available on microcon-
trollers, the Card JVM 16 implements a strict subset of the
Java programming language. Consequently, a Java applica-
tion 20 compiles into a class file that contains a strict subset of
Java byte codes. This enables application programmers to
program in this strict subset of Java and still maintain com-
patibility with existing Java Virtual Machines. The semantics
of the Java byte codes interpreted by the Card JVM 16 are

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 31 of 35

US 7,818,727 B2

13

described in the aforementioned Java Virtual Machine Speci-
fication. The subset of byte codes interpreted by the Card
JVM 16 can be found in Appendix C. The card class file
converter 26 checks the Java application 20 to ensure use of
only the features available in this subset and converts into a
form that is understood and interpreted by the Card JVM 16.

In other embodiments, the Card JVM 16 is designed to
interpret a different set or augmented set of byte codes 116.
Although a different byte code set might lead to some perfor-
mance improvements, departing from a strict Java subset may
not be desirable from the point of view of security that is
present in the original Java byte codes or compatibility with
mainstream Java development tools.

All Card JVM 16 applications 126 have a defined entry
point denoted by a class and a method in the class. This entry
point is mapped in the string to ID input map 30 and assigned
by the card class file converter 26. Classes, methods and fields
within a Java application 20 are assigned IDs by the card class
file converter 26. For example, the ID corresponding to the
main application class may be defined as F001 and the ID
corresponding to its main method, such as “main()V could
be defined as F002.

The overall execution architecture of the Card JVM is
described by the flowchart in FIG. 15. Execution of the Card
JVM 16 begins at the execution control 120, which chooses a
card application 126z to execute. It proceeds by finding and
assigning an entry point 152 (a method) in this card applica-
tion for the Card JVM 16 to interpret. The Card JVM 16
interprets the method 153. If the interpretation proceeds suc-
cessfully 154, the Card JVM 16 reports success 155 returning
control back to the execution control 120. If in the course of
interpretation 153 the Card JVM 16 encounters an unhandled
error or exception (typically a resource limitation or a security
violation), the Card JVM 16 stops 156 and reports the appro-
priate error to the terminal 14.

An essential part of the Card JVM 16 is a subroutine that
handles the execution of the byte codes. This subroutine is
described by the flowchart in FIG. 16. Given a method 160 it
executes the byte codes in this method. The subroutine starts
by preparing for the parameters of this method 161. This
involves setting the VM stack 144a pointer, VM stack 144a
frame limits, and setting the program counter to the first byte
code of the method.

Next, the method flags are checked 162. If the method is
flagged native, then the method is actually a call to native
method code (subroutine written in the microcontroller’s
native processor code). In this case, the Card JVM 16 pre-
pares for an efficient call 163 and return to the native code
subroutine. The parameters to the native method may be
passed onthe VM stack 144q or via the System stack 148. The
appropriate security checks are made and the native method
subroutine is called. On return, the result (if any) of the native
method subroutine is placed on the VM stack 144a so that it
may be accessed by the next byte code to be executed.

The dispatch loop 164 of the Card JVM 16 is then entered.
The byte code dispatch loop is responsible for preparing,
executing, and retiring each byte code. The loop terminates
when it finishes interpreting the byte codes in the method 160,
or when the Card JVM 16 encounters a resource limitation or
a security violation.

If'a previous byte code caused a branch to be taken 165 the
Card JVM prepares for the branch 165a. The next byte code
is retrieved 1655. In order to keep the cost of processing each
byte code down, as many common elements such as the byte
code arguments, length, type are extracted and stored.

To provide the security offered by the security model of the
programming language, byte codes in the class file must be

5

20

25

30

35

40

45

50

55

60

65

14

verified and determined conformant to this model. These
checks are typically carried out in prior art by a program
referred to as the byte code verifier, which operates in four
passes as described in the Java Virtual Machine Specification.
To offer the run-time security that is guaranteed by the byte
code verifier, the Card JVM 16 must perform the checks that
pertain to the Pass 3 and Pass 4 of the verifier. This checking
can be bypassed by the Card JVM 16 if it can be guaranteed
(which is almost impossible to do) that the byte codes 60
interpreted by the Card JVM 16 are secure. At the minimum,
code security can be maintained as long as object references
cannot be faked and the VM stack 144a and local variable
bounds are observed. This requires checking the state of the
VM stack 144q with respect to the byte code being executed.

To enforce the security model of the programming lan-
guage, a 256-byte table is created as shown in Appendix G
which is hereby incorporated by reference. This table is
indexed by the byte code number. This table contains the type
and length information associated with the indexing byte
code. It is encoded with the first 5 bits representing type, and
the last 3 bits representing length. The type and length of the
byte code is indexed directly from the table by the byte code
number. This type and length is then used for checking as
shown in Appendix H which is hereby incorporated by refer-
ence. In Appendix H, the checking process begins by decod-
ing the length and type from the table in Appendix G which is
hereby incorporated by reference. The length is used to incre-
ment the program counter. The type is used first for pre-
execution checking, to insure that the data types on the VM
stack 144a are correct for the byte code that is about to be
executed. The 256 bytes of ROM for table storage allows the
original Java byte codes to be run in the Card JVM 16 and
minimizes the changes required to the Java class file to be
loaded in the card. Additional Java byte codes can be easily
supported since it is relatively easy to update the appropriate
table entries.

In other embodiments, as shown in FIG. 10, the Java byte
codes in the method are renumbered in such a manner that the
byte code type and length information stored in the table in
Appendix H is implicit in the reordering. Appendix H is
hereby incorporated by reference. Consequently, the checks
that must be performed on the state of the VM stack 144a and
the byte code being processed does not have to involve a table
look up. The checks can be performed by set of simple com-
parisons as shown in Appendix I which is hereby incorporated
by reference. This embodiment is preferable when ROM
space is at a premium, since it eliminates a 256-byte table.
However adding new byte codes to the set of supported byte
codes has to be carefully thought out since the new byte codes
have to fit in the implicit numbering scheme of the supported
byte codes.

In another embodiment, the Card JVM 16 chooses not to
perform any security checks in favor of Card JVM 16 execu-
tion speed. This is illustrated in the flowchart in FIG. 18. The
flow chart in FIG. 18 is the same as that of FIG. 16 with the
security checks removed. This option is not desirable from the
point of view of security, unless it can be guaranteed that the
byte codes are secure.

The Card JVM 16 may enforce other security checks as
well. If the byte code may reference a local variable, the Card
JVM 16 checks if this reference is valid, throwing an error if
it is not. If the reference is valid, the Card JVM 16 stores the
type of the local variable for future checking. The VM stack
144a pointer is checked to see if it is still in a valid range. If
not an exception is thrown. The byte code number is checked.
If it is not supported, an exception is thrown.

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10

Page 32 of 35

US 7,818,727 B2

15

Finally, the byte code itself is dispatched 165d. The byte
codes translated by the Card JVM 16 are listed in Appendix C.
The semantics of the byte codes are described in the afore-
mentioned Java Virtual Machine Specification with regard to
the state of the VM stack 144a before and after the dispatch of
the byte code. Note also that some byte codes (the byte codes,
INVOKESTATIC, INVOKESPECIAL, INVOKENONVIR-
TUAL and INVOKEVIRTUAL) may cause reentry into the
Card JVM 16, requiring processing to begin at the entry of the
subroutine 161. FIG. 17 shows the flowchart of the byte code
execution routine. The routine is given a byte code 171 to
execute. The Card JVM 16 executes 172 the instructions
required for the byte code. If in the course of executing the
Card JVM 16 encounters a resource limitation 173, it returns
an error 156. This error is returned to the terminal 16 by the
Card JVM 16. If the byte code executes successfully, it
returns a success 175.

After execution, the type of the result is used to set the VM
stack 144a state correctly 165¢, properly flagging the data
types on the VM stack 144a. The byte code information
gathered previously 1655 from the byte code info table is used
to set the state of the VM stack 144a in accordance with the
byte code that just executed.

In other embodiments, setting the output state of the VM
stack 144a with respect to the byte code executed is simplified
if the byte code is renumbered. This is shown in Appendix I
which is hereby incorporated by reference.

In yet another embodiment, the Card JVM 16 may bypass
setting the output state of the VM stack 144q in favor of Card
JVM 16 execution speed. This optionis not desirable from the
point of view of security, unless it can be guaranteed that the
byte codes are secure.

After the byte code has been executed, the byte code is
retired 165f. This involves popping arguments off the VM
stack 144a. Once byte code processing is completed, the loop
164 is repeated for the next byte code for the method.

Once the dispatch loop 164 terminates, the VM stack 144a
is emptied 166. This prevents any object references filtering
down to other Card JVM 16 invocations and breaking the
Card JVM’s 16 security. Termination 167 of the byte code
dispatch loop 164 indicates that the Card JVM 16 has com-
pleted executing the requested method.

To isolate data and applications in the integrated circuit
card 10 from each other, the integrated circuit card 10 relies
on the firewall mechanism 149 provided by the Card JVM 16.
Because the Card JVM implements the standard pass 3 and
pass 4 verifier checks, it detects any attempt by an application
to reference the data or code space used by another applica-
tion, and flag a security error 156. For example, conventional
low level applications can cast non-reference data types into
references, thereby enabling access to unauthorized memory
space, and violating security. With this invention, such an
attempt by a card application 126z to use a non-reference data
type as a reference will trigger a security violation 156. In
conventional Java, this protected application environment is
referred to as the sandbox application-interpretation environ-
ment.

However, these firewall facilities do not work indepen-
dently. In fact, the facilities are overlapping and mutually
reinforcing with conventional access control lists and encryp-
tion mechanisms shown in the following table:

20

25

30

35

40

50

55

60

65

16

Access

Control Virtual

Lists Machine Encryption
Data access access only data to
Protection control to own another

before namespace program

operation encrypted
Program access execution data
Protection control only on encrypted in

before correct program’s

execution types namespace
Communication access channel only mutually
Protection control on controls authenticated

channels in own parties can

namespace communicate

Taken together, these facilities isolate both data and appli-
cations on the integrated circuit card 10 and ensure that each
card application 126 can access only the authorized resources
of the integrated circuit card 10.

Referring to FIG. 19, card applications 126x, 126y, 126z
can be endowed with specific privileges when the card appli-
cations 126 execute. These privileges determine, for example,
which data files the card applications 126 can access and what
operations the card applications 126 can perform on the file
system 147. The privileges granted to the card applications
126 are normally set at the time that a particular card appli-
cation 126z is started by the user, typically from the terminal
14.

The integrated circuit card 10 uses cryptographic identifi-
cation verification methods to associate an identity 190 (e.g.,
identities 190a, 1905 and 190¢) and hence, a set of privileges
to the execution of the card application 126. The association
of the specific identity 190c¢ to the card application 126z is
made when the card application 126z begins execution, thus
creating a specific running application 200, as shown in FIG.
20. The identity 190 is a unique legible text string reliably
associated with an identity token. The identity token (e.g., a
personal identification number (PIN) or a RSA private key) is
an encryption key.

Referring to FIG. 20, in order to run a specific card appli-
cation 126z, the identity 190c¢ of the card application 126z
must be authenticated. The identity 190c¢ is authenticated by
demonstrating knowledge of the identity token associated
with the identity 190¢. Therefore, in order to run the card
application 126z, an agent (e.g., a card holder or another
application wishing to run the application) must show that it
possesses or knows the application’s identity-defining
encryption key.

One way to demonstrate possession of an encryption key is
simply to expose the key itself. PIN verification is an example
of this form of authentication. Another way to demonstrate
the possession of an encryption key without actually exposing
the key itself is to show the ability to encrypt or decrypt plain
text with the key.

Thus, a specific running application 200 on the integrated
circuit card 10 includes a card application 126z plus an
authenticated identity 190c. No card application 126 can be
run without both of these elements being in place. The card
application 126z defines data processing operations to be
performed, and the authenticated identity 190¢ determines on
what computational objects those operations may be per-
formed. For example, a specific application 126z can only
access identity C’s files 202 in the file system 147 associated
with the specific identity 190c¢, and the specific card applica-

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 33 of 35

US 7,818,727 B2

17

tion 126z cannot access other files 204 that are associated with
identities other than the specific identity 190c.

The integrated circuit card 10 may take additional steps to
ensure application and data isolation. The integrated circuit
card 10 furnishes three software features sets: authenticated-
identity access control lists; a Java-based virtual machine;
and one-time session encryption keys to protect data files,
application execution, and communication channels, respec-
tively. Collectively, for one embodiment, these features sets
provide the application data firewalls 149 for one embodi-
ment. The following discusses each software feature set and
then shows how the three sets work together to insure appli-
cation and data isolation on the integrated circuit card 10.

An access control list (ACL) is associated with every com-
putational object (e.g., a data file or a communication chan-
nel) on the integrated circuit card 10 that is be protected, i.e.,
to which access is to be controlled. An entry on an ACL (for
a particular computational object) is in a data format referred
to as an e-tuple:

type:identity:permissions

The type field indicates the type of the following identity (in
the identity field), e.g., a user (e.g., “John Smith™), or a group.
The permissions field indicates a list of operations (e.g., read,
append and update) that can be performed by the identity on
the computational object.
As an example, for a data file that has the ACL entry:
USER:AcmeAirlines:RAU,

any application whose identity is “AcmeAirlines” can read
(“R”), append (“A”) and update (“U”) the data file. In addi-
tion, the ACL may be used selectively to permit the creation
and deletion of data files. Furthermore, the ACL may be used
selectively to permit execution of an application.

Whenever a computational object is accessed by a running
application 200, the access is intercepted by the Card JIVM 16
and passed to the card operating system 122, which deter-
mines if there is an ACL associated with the object. If there is
an associated ACL, then the identity 190¢ associated with the
running application 200 is matched on the ACL. If the identity
is not found or if the identity is not permitted for the type of
access that is being requested, then the access is denied.
Otherwise, the access is allowed to proceed.

Referring to FIG. 13, to prevent the potential problems due
to the single data path between the integrated circuit card 10
and the terminal 14, communication channel isolation is
accomplished by including in the identity authentication pro-
cess the exchange of a one-time session key 209 between the
a card application 126z and the terminal application 136. The
key 209 is then used to encrypt subsequent traffic between the
authenticating terminal application 136 and the authenticated
card application 126z. Given the one-time session key 209, a
rogue terminal application can neither “listen in” on an
authenticated communication between the terminal 14 and
the integrated circuit card 10, nor can the rogue terminal
application “spoof” the card application into performing
unauthorized operations on its behalf.

Encryption and decryption of card/terminal traffic can be
handled either by the card operating system 122 or by the card
application itself126z. In the former case, the communication
with the terminal 14 is being encrypted transparently to the
application, and message traffic arrives decrypted in the data
space of the application. In the latter case, the card application
126z elects to perform encryption and decryption to provide
an extra layer of security since the application could encrypt
data as soon as it was created and would decrypt data only
when it was about to be used. Otherwise, the data would
remain encrypted with the session key 209.

20

25

30

35

40

45

50

55

60

65

18

Thus, the application firewall includes three mutually rein-
forcing software sets. Data files are protected by authenti-
cated-identity access control lists. Application execution
spaces are protected by the Card JVM 16. Communication
channels are protected with one-time session encryption keys
209.

In other embodiments, the above-described techniques are
used with a microcontroller (such as the processor 12) may
controldevices (e.g., part of an automobile engine) other than
an integrated circuit card. In these applications, the micro-
controller provides a small platform (i.e., a central processing
unit, and a memory, both of which are located on a semicon-
ductor substrate) for storing and executing high level pro-
gramming languages. Most existing devices and new designs
that utilize a microcontroller could use this invention to pro-
vide the ability to program the microcontroller using a high
level language, and application of this invention to such
devices is specifically included.

The term application includes any program, such as Java
applications, Java applets, Java aglets, Java servlets, Java
commlets, Java components, and other non-Java programs
that can result in class files as described below.

Class files may have a source other than Java program files.
Several programming languages other than Java also have
compilers or assemblers for generating class files from their
respective source files. For example, the programming lan-
guage Eiffel can be used to generate class files using Pirmin
Kalberer’s “J-Fiffel”, an Eiffel compiler with JVM byte code
generation (web site: http://www.spin.ch/~kalberer/jive/in-
dex.htm). An Ada 95 to Java byte code translator is described
in the following reference (incorporated herein by reference):
Taft, S. Tucker, “Programming the Internet in Ada 95, pro-
ceedings of Ada Europe *96, 1996. Jasmin is a Java byte code
assembler that can be used to generate class files, as described
in the following reference (incorporated herein by reference)
Meyer, Jon and Troy Downing, “Java Virtual Machine”,
O’Reilly, 1997. Regardless of the source of the class files, the
above description applies to languages other than Java to
generate codes to be interpreted.

FIG. 21 shows an integrated circuit card, or smart card,
which includes a microcontroller 210 that is mounted to a
plastic card 212. The plastic card 212 has approximately the
same form factor as a typical credit card. The communicator
12a can use a contact pad 214 to establish a communication
channel, or the communicator 12a can use a wireless com-
munication system.

In other embodiments, a microcontroller 210 is mounted
into a mobile or fixed telephone 220, effectively adding smart
card capabilities to the telephone, as shown in FIG. 22. In
these embodiments, the microcontroller 210 is mounted on a
module (such as a Subscriber Identity Module (SIM)), for
insertion and removal from the telephone 220.

In other embodiments, a microcontroller 210 is added to a
key ring 230 as shown in FIG. 23. This can be used to secure
access to an automobile that is equipped to recognize the
identity associated with the microcontroller 210 on the key
ring 230.

Jewelry such as a watch or ring 240 can also house a
microcontroller 210 in an ergonomic manner, as shown in
FIG. 24. Such embodiments typically use a wireless commu-
nication system for establishing a communication channel,
and are a convenient way to implement access control with a
minimum of hassle to the user.

FIG. 25 illustrates a microcontroller 210 mounted in an
electrical subsystem 252 of an automobile 254. In this
embodiment, the microcontroller is used for a variety of pur-
poses, such as to controlling access to the automobile, (e.g.

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 34 of 35

US 7,818,727 B2

19

checking identity or sobriety before enabling the ignition
system of the automobile), paying tolls via wireless commu-
nication, or interfacing with a global positioning system
(GPS) to track the location of the automobile, to name a few.

While specific embodiments of the present invention have
been described, various modifications and substitutions will
become apparent to one skilled in the art by this disclosure.
Such modifications and substitutions are within the scope of
the present invention, and are intended to be covered by the
appended claims.

We claim:

1. A programmable device comprising:

a memory, a non-volatile memory and a processor;

the non-volatile memory storing:

an application for the programmable device obtained from

an application having a class file format wherein the

application for the programmable device is obtained
from the application having a class file format by first
compiling the application having a class file format into

a compiled form and then converting the compiled form

into a converted form, and

an interpreter configured to interpret applications in the

converted form; and

the processor coupled to the memory, the processor con-

figured to use the interpreter to interpret the application

for the programmable device for execution.

2. The programmable device of claim 1, wherein the class
file format comprises a Java class file format.

3. A programmable device comprising:

a memory, and

a processor;

the memory comprising:

an interpreter ; and

at least one application loaded in the memory to be
interpreted by the interpreter, wherein the at least one
application is generated by a programming environ-
ment comprising:

a)a compiler for compiling application source programs
written in high level language source code form into a
compiled form, and

b) a converter for post processing the compiled form into
a minimized form suitable for interpretation within
the set of resource constraints by the interpreter.

4. The programmable device of claim 3, wherein the com-
piled form includes attributes, and the converter comprises a
means for including attributes required by the interpreter
while not including the attributes not required by the inter-
preter.

5. The programmable device of claim 3 wherein the com-
piled form is in a standard Java class file format and the
converter accepts as input the compiled form in the standard
Java class file format and produces output in a form suitable
for interpretation by the interpreter.

6. The programmable device of claim 3 wherein the com-
piled form includes associating an identifying string for
objects, classes, fields, or methods, and the converter com-
prises a means for mapping such strings to unique identifiers.

7. The programmable device of claim 6 wherein each
unique identifier is an integer.

8. The programmable device of claim 6 wherein the map-
ping of strings to unique identifiers is stored in a string to
identifier map file.

9. The programmable device of claim 3 where in the high
level language supports a first set of features and a first set of
data types and the interpreter supports a subset of the first set
of features and a subset of the first set of data types, and
wherein the converter verifies that the compiled form only

20

25

30

35

40

45

50

55

60

65

20

contains features in the subset of the first set of features and
only contains data types in the subset of the first set of data
types.

10. The programmable device of claim 6 wherein the com-
piled form is in a byte code format and the converter com-
prises means for translating from the byte codes in the com-
piled form to byte codes in a format suitable for interpretation
by the interpreter by:

recording all jumps and their destinations in the original

byte codes:

converting the compiled form using at least one step in a

process including the steps:

a) converting specific byte codes into equivalent generic
byte codes or vice-versa;

b) moditying byte code operands from references using
identifying strings to references using unique identi-
fiers; and

¢) renumbering byte codes in the compiled form to
equivalent byte codes in the format suitable for inter-
pretation; and

relinking jumps for which destination address is effected

by conversion step a), b), or ¢).

11. The programmable device of claim 3 wherein the appli-
cation program is compiled into a compiled form for which
resources required to execute or interpret the compiled form
exceed those available on the microcontroller.

12. The programmable device of claim 3 wherein the com-
piled form is designed for portability on different computer
platforms.

13. The programmable device of claim 3 wherein the inter-
preter is further configured to determine, during an interpre-
tation of an application, whether the application meets a
security criteria selected from a set of rules containing at least
one rule selected from the set:

not allowing the application access to unauthorized por-

tions of memory,

not allowing the application access to unauthorized micro-

controller resources,

wherein the application is composed of byte codes and

checking a plurality of byte codes at least once prior to

execution to verify that execution of the byte codes does
not violate a security constraint.

14. The programmable device of claim 3 wherein at least
one application program is generated by a process including
the steps of:

prior to loading the application verifying that the applica-

tion does not violate any security constraints; and

loading the application in a secure manner.

15. The programmable device of claim 14 wherein the step
of'loading in a secure manner comprises the step of:

verifying that the loading identity has permission to load

applications onto the microcontroller.

16. The programmable device of claim 14 wherein the step
of'loading in a secure manner comprises the step of:

encrypting the application to be loaded using a loading key.

17. A method of programming a programmable device
having a memory and a processor operating according to a set
of resource constraints, the method comprising the steps of:

inputting an application program in a first programming

language;

compiling the application program in the first program-

ming language into a first intermediate code associated

with the first programming language, wherein the first
intermediate code being interpretable by at least one first
intermediate code virtual machine;

converting the first intermediate code into a second inter-

mediate code by performing at least one operation to

Case 6:10-cv-00561 Document 1-3 Filed 10/22/10 Page 35 of 35

US 7,818,727 B2

21

replace a construct in the first intermediate code with an
equivalent construct in the second intermediate code;
wherein the second intermediate code is interpretable
within the set of resource constraints by a second inter-
mediate code virtual machine; and 5
loading the second intermediate code into the memory of
the programmable device.
18. The method of programming a programmable device of
claim 17 wherein the step of converting further comprises:
associating an identifying string for objects, classes, fields, 10
or methods; and mapping such strings to unique identi-
fiers.
19. The method of claim 18 wherein the step of mapping
comprises the step of mapping strings to integers.
20. The method of claim 17 wherein the step of converting 15
comprises the steps of:

22

recording all jumps and their destinations in the original
byte codes;

converting the compiled form using at least one step in a
process including the steps:

a) converting specific byte codes into equivalent generic
byte codes or vice-versa;

b) moditying byte code operands from references using
identifying strings to references using unique identi-
fiers;

¢) renumbering byte codes in a compiled format to
equivalent byte codes in a format suitable for inter-
pretation; and

relinking jumps for which destination address is effected
by conversion step a), b), or ¢).

#* #* #* #* #*

%JS 44 (Rev. 12/07)

the civil docket sheet.

Case 6:10-cv-005%1‘;ﬁ§%@t]§1(1Sﬁﬁ%irlw/ﬂ/lo Page 1 of 2

The JS 44 civil cover sheet and the information contained herein neither replace nor supplement the filing and service of pleadings or other papers as required by law, except as provided
by local rules of court. This form, approved by the Judicial Conference of the United States in September 1974, is required for the use of the Clerk of Court for the purpose of initiating

(SEE INSTRUCTIONS ON THE REVERSE OF THE FORM.)

Sam

I. (a) PLAINTIFFS
Gemalto S.A.

(b) County of Residence of First Listed Plaintiff

Meudon Cedex, France

DEFENDANTS

(EXCEPT IN U.S. PLAINTIFF CASES)

(C Attorney’s (Firm Name, Address, and Telephone Number,

axter, McKool Smith, P.C., 104 E. Houston

Marshall, Texas 75670 -- (903) 923-9000

treet, Suite 300,

NOTE:

Attorneys (If Known)

See Attachment A

County of Residence of First Listed Defendant
(IN U.S. PLAINTIFF CASES ONLY)

IN LAND CONDEMNATION CASES, USE THE LOCATION OF THE

LAND INVOLVED.

Taiwan, R.O.C.

II. BASIS OF JURISDICTION

(Place an “X” in One Box Only)

(For Diversity Cases Only)

II1. CITIZENSHIP OF PRINCIPAL PARTIES(Placc an “X” in One Box for Plaintiff

and One Box for Defendant)

31 U.S. Government X 3 Federal Question PTF DEF PTF DEF
Plaintiff (U.S. Government Not a Party) Citizen of This State a1 O 1 Incorporated or Principal Place o4 04
of Business In This State
32 U.S. Government O 4 Diversity Citizen of Another State a2 O 2 Incorporated and Principal Place os 0Os
Defendant (Indicate Citizenship of Parties in Item III) of Business In Another State
Citizen or Subject of a a3 O 3 Foreign Nation g6 0O6
Foreign Country
IV. NATURE OF SUIT (Place an “X” in One Box Onl\./)
CONTRACT TORTS FORFEITURE/PENALTY BANKRUPTCY OTHER STATUTES I
3 110 Insurance PERSONAL INJURY PERSONAL INJURY |3 610 Agriculture O 422 Appeal 28 USC 158 O 400 State Reapportionment
O 120 Marine O 310 Airplane O 362 Personal Injury - O 620 Other Food & Drug O 423 Withdrawal O 410 Antitrust
3 130 Miller Act O 315 Airplane Product Med. Malpractice O 625 Drug Related Seizure 28 USC 157 O 430 Banks and Banking
[140 Negotiable Instrument Liability O 365 Personal Injury - of Property 21 USC 881 O 450 Commerce
3 150 Recovery of Overpayment |3 320 Assault, Libel & Product Liability 3 630 Liquor Laws PROPERTY RIGHTS 3 460 Deportation
& Enforcement of Judgment| Slander [368 Asbestos Personal O 640 R.R. & Truck O 820 Copyrights O 470 Racketeer Influenced and
3 151 Medicare Act 3 330 Federal Employers’ Injury Product 3 650 Airline Regs. X 830 Patent Corrupt Organizations
[152 Recovery of Defaulted Liability Liability O 660 Occupational O 840 Trademark [480 Consumer Credit
Student Loans O 340 Marine PERSONAL PROPERTY Safety/Health O 490 Cable/Sat TV
(Excl. Veterans) O 345 Marine Product O 370 Other Fraud 690 Other O 810 Selective Service
3 153 Recovery of Overpayment Liability 3 371 Truth in Lending LABOR SOCIAL SECURITY 3 850 Securities/Commodities/
of Veteran’s Benefits O 350 Motor Vehicle [380 Other Personal 3 710 Fair Labor Standards O 861 HIA (1395ff) Exchange
3 160 Stockholders’ Suits O 355 Motor Vehicle Property Damage Act 3 862 Black Lung (923) O 875 Customer Challenge
[190 Other Contract Product Liability O 385 Property Damage O 720 Labor/Mgmt. Relations O 863 DIWC/DIWW (405(g)) 12 USC 3410
3 195 Contract Product Liability |(3 360 Other Personal Product Liability O 730 Labor/Mgmt.Reporting 3 864 SSID Title XVI O 890 Other Statutory Actions
[196 Franchise Injury & Disclosure Act 3 865 RSI (405(g)) O 891 Agricultural Acts
| REAL PROPERTY CIVIL RIGHTS PRISONER PETITIONS |3 740 Railway Labor Act FEDERAL TAX SUITS O 892 Economic Stabilization Act
3 210 Land Condemnation O 441 Voting [510 Motions to Vacate 3 790 Other Labor Litigation O 870 Taxes (U.S. Plaintiff O 893 Environmental Matters
3 220 Foreclosure O 442 Employment Sentence O 791 Empl. Ret. Inc. or Defendant) 3 894 Energy Allocation Act
O 230 Rent Lease & Ejectment |(O 443 Housing/ Habeas Corpus: Security Act 3 871 IRS—Third Party O 895 Freedom of Information
3 240 Torts to Land Accommodations 3 530 General 26 USC 7609 Act
3 245 Tort Product Liability O 444 Welfare O 535 Death Penalty IMMIGRATION O 900Appeal of Fee Determination
3 290 All Other Real Property |(O 445 Amer. w/Disabilities - |3 540 Mandamus & Other |0 462 Naturalization Application Under Equal Access
Employment [550 Civil Rights 3 463 Habeas Corpus - to Justice
O 446 Amer. w/Disabilities - | 555 Prison Condition Alien Detainee O 950 Constitutionality of
Other O 465 Other Immigration State Statutes
O 440 Other Civil Rights Actions

V. ORIGIN (Place an “X” in One Box Only) Appeal to District
® 1 Original [2 Removed from [3 Remanded from [4 Reinstatedor [5 Trartlﬁferégzci fr(;m O 6 Multidistrict [7 {&dg? tf rotm
Proceeding State Court Appellate Court Reopened ?snp(zeciefiz) 1stric Litigation Jugggfq;ﬁte

VI. CAUSE OF ACTION

Cite the U.S. Civil Statute under which you are filing (Do not cite jurisdictional statutes unless diversity):

35 USC Sec. 101 et seq.

Patent Infringement

Brief description of cause:

VII. REQUESTED IN 0 CHECK IF THIS IS A CLASS ACTION DEMAND $ CHECK YES only if demanded in complaint:
COMPLAINT: UNDER F.R.C.P.23 JURY DEMAND: # Yes I No
VIII. RELATED CASE(S)] o
IF ANY (See instructions): sy DOCKET NUMBER
DATE SIGNATURE OF ATTORNEY OF RECORD
10/22/2010 /s/ Sam Baxter

FOR OFFICE USE ONLY

RECEIPT #

AMOUNT

APPLYING IFP

JUDGE

MAG. JUDGE

Case 6:10-cv-00561 Document 1-4 Filed 10/22/10 Page 2 of 2

Attachment A

HTC CORPORATION

HTC AMERICA INC.

EXEDEA, INC.

SAMSUNG ELECTRONICS CO., LTD.

SAMSUNG TELECOMMUNICATIONS AMERICA LLC
MOTOROLA, INC.

GOOGLE INC.

